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Abstract 

The entire process of a combined-heat-and-power (CHP) coal-fired power plant from coal delivery 

to electricity and heat generation can be modeled using machine learning methods that generate a 

single set of equations that describe the entire plant. The basis for the model is the historical data 

from the data historian. No engineering or human input is required. This model is used to compute 

the optimal operational point at any moment in time, taking into account the current status of the 

plant as well as relevant external and internal factors. The criterion for optimality is the overall 

equipment efficiency over the entire plant. This method requires no changes to be made to the 

plant and requires nominal human effort to implement. The achievements are based on operating 

changes that are computed. No human judgment is involved, thus the model excludes a potential 

bias or human error. Having a uniform operational strategy 24 hours a day combined with the fact 

that this model can incorporate the full complexity of the plant is the novel element that lies at the 

heart of the improvement possibility in the range of one percent. This has been demonstrated in 

the Reuter-West CHP plant of Vattenfall in Berlin, Germany. 

 

1 Statement of the Problem 

A coal power plant essentially works by creating steam from water by heating it via a coal furnace. 

This steam is passed through a turbine, which turns a generator that makes the electricity. See 

figure 1 for a diagram. 

The plant has an efficiency that depends on how the plant is operated. While many smaller 

processes are automated using various technologies, the large scale processes are often con-

trolled by human operators. The power plant Reuter-West is largely automated also in these parts. 

Thus, the maximum possible efficiency of the plant depends largely on the decisions of the opera-

tors, defined by the knowledge and experience of the operator as well as the level of difficulty of 

any particular plant state. However, the employment of continuous and uniform knowledge and 

experience for the plant operation is not realistically possible as no one operator controls the plant 

over the long-term but usually only over an eight-hour shift. Observation results show oscillations 
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of parameters in a rough eight-hour pattern which supports the argument that a fluctuation in the 

knowledge and experience of human operators may lead to a fluctuation in the decision making 

and thus a varying influence on the operation of the plant. While some operators may be better 

than others, it is often not fully practical and/or possible to extract and structure the experience and 

knowledge of the best operators in such a fashion as to teach it to the others. 

 

Figure 1. The diagram describes the CHP process in overview including the major steps: (1) Entry-point of the air, (2) boiler with water 

and steam, (3) high-pressure turbine, (4) mid-pressure turbine, (5) low-pressure turbine, (6) condenser, (7) generator, (8) transformer, 

(9) feed into power grid, (10) district heating, (11) cooling water source, (12) cooling tower, (13) flue gas, (14) Ammonia addition (15) 

denitrification of flue gas, (16) air pre-heater, (17) dust filter, (18) ash end-product, (19) filtered ash end-product, (20) desulfurization of 

flue gas, (21) wash cycle, (22) chalk addition, (23) cement/gypsum removal, (24) cement/gypsum end-product. 

 

Furthermore, the plant outputs several thousand measurements at high cadence. At such frequen-

cy an operator cannot possibly keep track of even the most important of these at all times. This 

intensity combined with the high degree of complexity of the outputs presents an overwhelming 

challenge to the human mind to handle and the consequence is that suboptimal decisions are 

made. 

In this paper, a novel method is suggested to achieve the best possible, i.e. optimal, efficiency at 

any moment in time, taking into account all outputs produced as well as their complex interconnec-

tions. This method yields a computed efficiency increase in the range of one percent. Moreover, 

this efficiency increase is available uniformly over time effectively increasing the base output capa-

bility of the plant or reducing the CO2 emission of the plant per megawatt. 
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2 Methodology 

Sensor equipment is installed in all important parts of the plant and thus alerting the operator via 

the control system about the current state of the plant. The numerical values of all sensors can be 

arranged into a vector. Let us assume that we have a total of N measurements on and around the 

plant that we wish to look at. We may represent the state of the plant at time t by an N-dimensional 

vector, x(t). Via the data historian, we may obtain a set of such vectors for past times. If we order 

this set with respect to time, then this set is called a time-series, H = (x(-h), x(1-h), x(2-h), … , x(0)) 

where time t = 0 is the current moment and time t = -h is the most distant moment in the past that 

we wish to look at. Thus the time-series H is effectively a matrix with h+1 columns and N rows. 

Observe that this matrix contains all the decisions of the operators and all the reactions of the plant 

to these decisions. The knowledge and experience of the operators is thus plainly visible in the 

data. If the history is long and detailed enough, this information is all one needs to know about this 

plant in order to model it. 

We recall the topic of control theory. Here we are faced with a black box that has input signals and 

output signals. The process that connects input to output is totally unknown and is represented by 

the black box. Control theory now aims to discover the relationship between input and output by 

performing experiments. If we send a particular signal in, then we observe another signal coming 

out. Given enough such data and some analysis, control theory provides tools for creating a set of 

(differential-) equations that govern the behavior of the black box. The resulting set of equations is 

called a mathematical model. A crucial element is the time evolution of the process, i.e. an action 

at a certain time will have some effects immediately, some effects over a short-term and other ef-

fects over the long-term – this time dependency must be contained in the model for realistic re-

sults. 

Note that the model does not allow us to ‘understand’ the process inside the black box. But it does 

allow us to compute the output of the black box given a sample input. Using the results of optimiza-

tion theory, we can reverse this process and compute the input needed to achieve a given desired 

output. 

Control theory is meant to be applied manually. For a process as complex as that of a power plant, 

this is impractical due to the amount of work that would be required. It is suggested to use machine 

learning [1] to develop the set of equations automatically. There are various techniques available to 

achieve this such as neural networks [2]. We opt for the technique of recurrent neural networks [3]. 

Here we must differentiate classificatory neural networks [2] from recurrent neural networks [3]. 

The first can tell the difference between a finite number of types of objects while the second can 

represent the evolution over time. The necessary mathematical methods that allow recurrent neur-

al networks to be trained efficiently for large datasets coming from real industrial facilities have 

been invented only in 2005 and thus these methods can only be applied now. 
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The advantages of using machine learning over a human engineered model are (1) that the model 

is produced within a very short time (usually days), (2) that it is adaptive (i.e. it learns continuously 

as it experiences more data), (3) that it can change to match new situations (the new data is learnt) 

and (4) that the entire problem can be modeled (and not a simplified version as in the manual ap-

proach). Thus, (5) this method is economical. 

In the state vector that describes the plant, there are elements of three different types. First, there 

are measurements that can be directly controlled by the operator. An example is the amount of 

coal per hour being put into a particular mill. We call these controllable, xc
(t). Second, there are 

measurements that cannot be controlled at all by the operators and thus represent a state of the 

world outside the plant. An example is the outside air temperature. We call these uncontrollable, 

xu
(t). Third, there are measurements that are indirectly controlled via the controllable measure-

ments. An example is a vibration in the turbine. We call these semi-controllable, xs
(t). 

Uncontrollable measurements provide boundary conditions for the problem and so we really have 

a set of models depending on the boundary conditions. This poses no problem for machine learn-

ing and is simply included in the model of the black box that is the plant. The only requirement is 

that it must be clearly defined which measurements belong into which of the three possible groups. 

Once this is known, the learning may begin. 

What we obtain is a function f( xc
(t) ; xu

(t) ) = xs
(t). In words, this means that we have a function with 

the controllable measurements as variables, the uncontrollable measurements as given parame-

ters and the semi-controllable measurements as functional outputs. The plant efficiency is, of 

course, among the semi-controllable outputs of the function f(…). 

With this model and given a particular boundary condition xu
(t), we may compute the reaction of the 

plant xs
(t) to any particular operator decision xc

(t). This is effectively a plant simulation. Such a sys-

tem may be used for training and practice of the operators. 

More interestingly, we ask whether the function may be inverted, i.e. whether the function 

f-1( xs
(t) ; xu

(t) ) = xc
(t) can be obtained. Generally, it is not possible to invert functions directly. How-

ever, we do not require a closed form solution of this problem but only a numerical solution. This 

may be achieved using the theory of numerical methods [4]. 

In particular, we are not necessarily interested in general inversion but rather in a very special form 

of inversion, namely optimization. Given particular boundary conditions, we would wish to know 

what input variables lead to the optimal state of the plant. The optimum state is defined by some 

merit function g( xs
(t) ; xu

(t) ). The simplest such merit function is a single measurement point but we 

may get complex such as the plant efficiency and even take into account market prices and other 

business features to define what we believe to be the optimum. 
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Thus we ask, what is xc
(t) such that g( xs

(t) ; xu
(t) ) achieves a global maximum where the relation-

ship between the variable vector and the merit function is contained in the inverted model f-1( xs
(t) ; 

xu
(t) ) = xc

(t). This is a classic optimization problem. As the functions are only known numerically and 

they are highly non-linear and time-dependent, this is a complicated optimization problem requiring 

state-of-the-art treatment but such problems can be solved. 

 

3 Theoretical Limitations 

Of course, whatever methods we choose, they cannot have arbitrary accuracy or stability. Thus, 

every x(t) has an inherent measurement induced uncertainty ∆x(t) attached to it. This means that the 

true value of the state vector is somewhere in the range [x(t) - ∆x(t), x(t) + ∆x(t)]. 

Please note that no measurements made in the real world are ever completely precise. There are 

random and structured errors associated with the measurement process, also physical sensors 

drift with age and environmental effects. All of these must be taken into account to determine a 

reasonable measurement uncertainty ∆x(t). 

A further limitation is the length of the history. The history must contain a record of the variations 

that are to be expected in the future so that these variations, correlations and other structures may 

be included in the model. It is thus desirable that the history be as long as possible and also the 

time unit (governing the frequency of measurements) be as small as possible. Together these two 

define a history that contains the maximum available knowledge about the system. 

Our efforts are thus limited by three fundamental factors: (1) The number and identity of the mea-

surements made, (2) the length, frequency and variability of recorded history and (3) the inherent 

accuracy of a measurement itself. Together these three factors will determine whether a reliable 

and stable model can be found. 

 

4 Application 

Initially, the machine learning algorithm was provided with no data. Then the points measured were 

presented to the algorithm one by one, starting with the first measured point x(-h). Slowly, the model 

learned more and more about the system and the quality of its representation improved. Once 

even the last measured point x(0) was presented to the algorithm, it was found that the model cor-

rectly represents the system. 

In the particular plant considered here, Reuter-West in Berlin, eight months and nearly 2000 mea-

surement locations were selected as the history that was recorded at one value each every minute; 

yielding approximately 0.7 billion individual data points. After modeling, the accuracy of the function 
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deviated from the real measured output by less than 0.1%. This indicates that the machine learning 

method is actually capable of finding a good model and also that the recurrent neural network is a 

good way of representing the model. 

The power plant is largely automated and so we considered, for test purposes, only the district 

heating portion of the plant to be under the influence of the optimization program. The controllable 

variables would then be the flow rate, temperature and pressure of the of the district heating water 

at various stages during the production. 

The boundary conditions or uncontrollable parameters are provided by the coal quality, the tem-

perature, pressure and humidity of the outside air, the amount of power demanded from the plant, 

the temperature demanded for the district heating water in the district and the temperature of the 

cooling water at various points during the production. 

The model was then inverted for optimization of plant efficiency. The computation was done for the 

entire history available and it was found that the optimal point deviated from the actually achieved 

points by 1.1% efficiency in absolute terms. This is a significant gain in coal purchase but mainly a 

reduction of the CO2 emissions that save valuable emission certificates. 

In the analysis, about 800 different operational conditions (in the eight month history) were identi-

fied that the operators would have to react to. This is not practical for the human operator. The 

model is capable of determining the current state of the plant, computing the optimal reaction to 

these conditions and communicating this optimal reaction to the operators. The operators then 

implement this suggestion and the plant efficiency is monitored. It is found that 1.1% efficiency 

increase can be achieved uniformly over the long term. 

The model can provide this help continuously. As the plant changes, these changes are reflected 

in the data and the model learns this information continuously. Thus, the model is always current 

and can always deliver the optimal state. 

In daily operations, this means that the operators are given advice whenever the model computes 

that the optimal point is different from the current point. The operators then have the responsibility 

to implement the decision or to veto it. 

Specifically, an example situation may be that the outside air temperature changes during the day 

due to the sun rising. It could then be efficient to lower the pressure of district heating water by 0.3 

bars. The program would make this suggestion and after the change is effected, the efficiency in-

crease can be observed. 
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5 Conclusion 

The main benefits of the current approach are: (1) processes all measured parameters from the 

plant in real-time, (2) encompasses all interactions between these parameters and their time evolu-

tion, (3) provides a uniform and sustainable operational strategy 24 hours per day and (4) achieves 

the optimal operational point and thus smoothes out variations in human operations. 

For those parts of the power plant that are already automated, the model is valuable also. Automa-

tion generally functions by humans, programming a certain response curve into the controller. This 

curve is obtained by experience and is generally not optimal. The model can provide an optimal 

response curve. Based on this, the programming of the automation can be changed and the effi-

ciency increases. The model is thus advantageous for both manual and automated parts. 

Effectively the model represents a virtual power plant that acts identically to the real one. The vir-

tual one can thus act as a proxy on that we can dry run a variety of strategies and then port these 

to the real power plant only if they are good. That is the basic principle of the approach. The novel-

ty here is that we have demonstrated on a real power plant, that it is possible to generate a repre-

sentative and correct model based on machine learning of historical process data. This model is 

more accurate, all encompassing, more detailed, more robust and more applicable to the real 

power plant than any human engineered model possibly could be. 
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