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Abstract 
A blade tear on a steam turbine of a coal power plant is a major failure causing large 

financial losses. Knowing that such an event is going to occur in one or two days time, allows 

the operational staff to shut down the turbine before the damage is done. The affected blade 

may then be removed and normal operations resumed. To this end, we must verify two 

hypotheses: (1) It is possible to predict two days in advance that a blade tear is going to 

occur and (2) it is possible to determine which blade(s) is affected. Moreover, we wish to do 

so in an automated way not involving human experience or knowledge so that the prediction 

is fully objective, can be continuously run and is relatively inexpensive to implement. This 

paper describes the verification of both hypotheses on an actual example of a steam turbine 

in a coal power plant in Germany. 

 

Kurzfassung 
Ein Schauffelabriss an einer Dampfturbine in einem Kohlekraftwerk ist ein großes und teures 

Ereignis. Zwei Tage vorher zu wissen, dass ein solches Ereignis eintreffen wird, erlaubt dem 

Betreiber ein kontrolliertes Abfahren bevor der Schaden eintritt. Die betroffene Schaufelreihe 

kann nun entfernt und die Anlage wieder hochgefahren werden. Um dieses Ziel zu erreichen, 

müssen wir zwei Hypothesen verifizieren: (1) Es ist möglich zwei Tage im Voraus einen 

Schauffelabriss zu prognostizieren und (2) es ist möglich zu bestimmen welche 

Schauffelreihe betroffen ist. Darüberhinaus möchten wir dies automatisieren, so dass wir 

keine menschliche Erfahrung oder Wissen benötigen und damit die Prognose objektiv, 

kontinuierlich und finanziel günstig gemacht werden kann. Dieser Artikel beschreibt die 

Verifikation beider Hypothesen an einer realen Dampfturbine in Deutschland. 
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Given that the system under question (the turbine) is governed by physical laws that do not 

change over the history and that h is sufficiently large, then it follows that the function f 

exists: f(H) = H ∏ x(1), where the symbol ∏ indicates concatenation of the vector x(1) to the 

right side of the matrix H. This function may be applied recursively so that fn(H) = x(n). In this 

way, we may compute the n-th state of the system, i.e. the state that the system will have in 

n time steps from the current time. 

 

Thus, the mathematical challenge is to design methods to find f. The computational 

challenge is to determine f such that it gives reliable (i.e. x(1) matches reality) and stable 

performance (i.e. x(n) for large n does not diverge). 

 

 

2. Theoretical limitations 
Of course, whatever methods we choose, they cannot have arbitrary accuracy or stability. 

Every time the function f is applied, a bit of accuracy is lost. Thus, every x(n) has an inherent 

model induced uncertainty ∆x(n) attached to it. This means that the true value of the state 

vector is somewhere in the range [x(n) - ∆x(n), x(n) + ∆x(n)]. By and large, the size of this range 

grows with n and so there is a maximum possible n to which it is reasonable to perform a 

predictive computation. 

 

The initial source of the uncertainty is the measurement uncertainty ∆x(0) of the current state. 

Please note that no measurements made in the real world are ever completely precise. 

There are random and structured errors associated with the measurement process, also 

physical sensors drift with age and environmental effects. All of these must be taken into 

account to determine a reasonable measurement uncertainty ∆x(0), which then leads, via f, to 

the predictions’ uncertainties ∆x(n). 

 

A further limitation is the length of the history h. The history must contain a record of the 

variations that are to be expected in the future so that these variations, correlations and other 

structures may be included in the function f. It is thus desirable that h be as large as possible 

and also the time unit (governing the frequency of measurements) be as small as possible. 

Together these two define a history that contains the maximum available knowledge about 

the system. 

 



Our efforts are thus limited by three fundamental factors: (1) The number and identity of the 

measurements made, (2) the length, frequency and variability of recorded history and (3) the 

inherent accuracy of a measurement itself. Together these three factors will determine 

whether a reliable and stable model f can be found and, if it can, for how long into the future 

it can deliver useful predictions. 

 

 

3. Methods 
There exist many methods to find the mathematical model f that we desire and many 

computable representations of it. A typical approach is to create a model based on first 

principles (i.e. physical laws derived from mechanics, thermodynamics, etc.). These models 

are usually created by human engineers and implemented in a generic software program. 

Manually created models have to be simplified in order to be tractable by humans. Such 

models are also very difficult to adapt to new situations (e.g. a rebuild) and thus have a finite 

lifetime associated with them. Because of the necessary effort to create such models and the 

above limitations, these are expensive. 

 

Mathematically, the field of machine learning has focused on creating such models 

automatically without human participation [1]. The advantages are that the model is produced 

within a very short time (usually days), that it is adaptive (i.e. it learns continuously as it 

experiences more data), that it can change to match new situations (the new data is learnt) 

and that the entire problem can be modeled (and not a simplified version as in the manual 

approach). Thus, this method is economical. 

 

For example, the technology of neural networks is often applied to problems of this type. 

Here we must differentiate classificatory neural networks [2] from recurrent neural networks 

[3]. The first can tell the difference between a finite number of types of objects while the 

second can represent the evolution over time. 

 

The method applied later in this paper is an advanced state-of-the-art proprietary machine 

learning method developed by algorithmica technologies for these forms of problems. 

 

 



4. Application 
The specific turbine in question has over 80 measurements on it that were considered 

worthwhile to monitor. Most of these were vibrations but there were also some temperatures, 

pressures and electrical values. A history of six months was deemed long enough and the 

frequency depended upon each individual measurement point – some were measured 

several times per second, others only once every few hours. In fact, the data historian only 

stores a new value in its database if the new value differs from the last stored value by more 

than a static parameter. In this way, the history matrix contained a realistic picture of an 

actual turbine instrumented as it normally is in the industry. No enhancements were made to 

the turbine, its instrumentation or the data itself. A data dump of six months was made 

without modification. 

 

The data stopped two days before a known (historically occurring) blade tear on that turbine. 

During time leading up to the blade tear and until immediately before it, no sign of it could be 

detected by any analysis run by the plant engineers either before or after the blade tear was 

known. Thus, it was concluded that the tear is a spontaneous and thus unpredictable event. 

 

Initially, the machine learning algorithm was provided with no data. Then the points 

measured were presented to the algorithm one by one, starting with the first measured point 

x(-h). Slowly, the model learned more and more about the system and the quality of its 

predictions improved both absolutely (the interval ∆x(n)) and in terms of the maximum 

possible future period of prediction. Once even the last measured point x(0) was presented to 

the algorithm, it produced a predication valid for the following two days of real time. The 

result may be seen in figure 2. 

 



 
Fig. 2: Here we see the actual measurement (green) with its measurement uncertainty (the 

two blue lines) versus the model output (red) with its uncertainties (the two black 

lines) over a little history (left of the vertical pink line) and for the future two days 

(right of the vertical pink line). We observed a close correspondence between the 

measurement and the model. Particularly the event, the sharp drop, is correctly 

predicted two days in advance. 

 

Thus, we can predict accurately that something will take place in two days from now with an 

accuracy of a few hours. Indeed it is apparent from the data that it would have been 

impossible to predict this particular event more than two days ahead of time due to the 

qualitative change in the system (the failure mode) occurring a few days before the event. 

The model must be able to see some qualitative change for some period of time before it is 

capable of extrapolating a failure and so the model has a reaction time. Events that are 

caused quickly are thus predicted relatively close to the deadline but two days warning is 

enough to prevent the major damages in this case. In general, failure modes that are slower 

can be predicted longer in advance. 

 

It must be emphasized here that the model can only predict an event, such as the drop of a 

measurement. It cannot label this event with the words “blade tear.” The identification of an 

event as a certain type of event is altogether another matter. It is possible via the same sort 



of methods but would require examples of blade tears and this is a practical difficulty. Thus, 

the model is capable of giving a specific time when the turbine will suffer a major defect; the 

nature of the defect must be discovered by manual search on the physical turbine. 

 

This is interesting but to be truly helpful, we must be able to locate the damage within the 

large structure of the turbine, so that maintenance personnel will not spend days looking for 

the proverbial needle in the haystack. 

 

Fault detection and localization is now done by performing an advanced data-mining 

methodology that tracks frequency distributions of signals over the history and can deduce 

qualitative changes. Over the 80 measurements points, we are able to isolate that four of 

them contain a qualitative shift in their history and that two of these four go through such a 

shift several days before the other two. Thus, we are able to determine which two out of 80 

locations in the turbine are the root cause for the event that is to occur in two days. See 

figure 3 for an illustration. 

 

 
Fig. 3: We compute a deviation from normal being tracked over a window of about four days 

length. So we observe that two points start behaving abnormally and two days later, 

two other points behave abnormally. About 3.5 days after the start of the abnormal 

behavior, this new behavior has become normal and so the deviation from normal is 

seen to reduce again. Therefore, we observe a qualitative change in the 

performance of these four points. 



 

The localization that is possible here is to identify the sensor that measures an abnormal 

signal and that will be the first to show the anomaly that will develop into the event. It is, of 

course, not possible to compute a physical location on the actual turbine more accurately 

than the data provided. However, a physical search of the turbine, after the actual blade tear, 

found out that the cause was indeed at the location determined by the data-mining approach. 

 

5. Prospects 
Even more than this is possible. If the damage mechanism is slower (aging, dirt 

accumulation, fatigue, etc.), then much longer prediction intervals are possible. For example, 

in the context of catalyst aging in (petro-) chemical processes, prediction windows of several 

months are realistic. 

 

Also complex failures can be predicted in which the cause of the failure has several effects 

over time before the equipment actually shuts down. For instance, an abnormally small 

amount of lubricant in a machine can cause increased friction that can cause blockages that 

can cause moving parts to stop that can cause spindle breakages. We have many links 

before an effect visible from the outside occurs and yet we may trace abnormalities to their 

beginning and predict the end. 

 

6. Conclusion 
It is possible to reliably and accurately predict a failure on a steam turbine two days in 

advance. Furthermore, it is possible to locate the cause of this within the turbine so that the 

location covered by the sensor that measures the anomaly can be focused on by the 

maintenance personnel. The combination of these two results, allows preventative 

maintenance on a turbine to be performed in a real industrial setting saving the operator a 

great expense. 

 

Not only is this possible, it has been done with automated mathematical means that do not 

require any human knowledge to be inserted into the model. The model thus requires no time 

investment by the plant’s engineers and requires no detailed knowledge of the plant itself – it 

requires only historical data. Thus this effort is very economical. 

 

The approach has been successfully tested on a real turbine blade tear at a coal power plant 

in Germany. 
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