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Abstract 
A process-industry production process is usually monitored via an extensive array of 
sensor instrumentation that measures all the important process and condition 
monitoring data at regular intervals. This data is stored over the longterm and 
represents a complete information repository for how the process works and how it 
can be regulated. It is possible to use this repository to create a mathematical model 
of the process. The mathematical model is a set of equations that fully describe the 
entire process industry facility. Usually such models are painstakingly written by 
human engineers and are seldom worth the effort put into them due to their rigidity 
with respect to process changes and real-life conditions. Recently, it was 
demonstrated that this modelling can be done fully automatically, so that the model is 
arrived at using no human involvement but only mathematical methods from machine 
learning. This model is more accurate, more robust and always adapts to the latest 
information. With this method, information becomes knowledge. Using the model, it is 
now possible to compute the value of all adjustable parameters of the process at any 
one time such that a particular goal function is maximized; in this case we choose 
energy efficiency. This efficiency increase is due only to a change in the way the 
plant is run – it requires no capital investment or extra equipment whatsoever. It has 
been demonstrated in real process industry plants that the energy efficiency increase 
is substantial in power plants (1%), chemical plants (8%), oil refineries (6%), and 
several more. This has been demonstrated to be practical in industrial countries like 
Germany and the USA but also in emerging markets such as China. 
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1. Statement of the Problem 
Any industrial plant converts one substance into another wasting energy in the 
process as efficiencies are always below 100%. For the purposes of illustration, we 
will be focusing on a coal-fueled power plant in this paper. Equally well, these results 
and observations apply to industrial facilities such as chemical plants, oil rigs, 
refineries or piece good manufacturers. 
 
A coal power plant essentially works by creating steam from water by heating it via a 
coal furnace. This steam is passed through a turbine, which turns a generator that 
makes the electricity. See figure 1 for a diagram. 
 



The plant has an efficiency that is approximately 40% depending on the design. 
However, the efficiency is not a constant but changes over time depending on how 
the plant is operated. While many smaller processes are automated using various 
technologies, the large scale processes are often controlled by human operators. 
Depending on the knowledge, experience and level of difficulty of any particular plant 
state, the decisions of the operators get the plant closer to the maximum possible 
efficiency. 
 
With operators working in shifts, no one operator controls the plant over the long-
term but usually in eight hour shifts. It can be observed that the efficiency oscillates in 
a rough eight hour pattern showing that human decision making has a significant 
influence on the efficiency. Not only are some operators better than others, it is not 
practical to extract and structure the experience and knowledge contained in the 
human brain of the best operator in such a fashion as to teach it to the others. 
 
Furthermore, the plant outputs several thousand measurements at high cadence. An 
operator cannot possibly keep track of even the most important of these at all times. 
The degree of complexity is too great for the human mind to handle and the 
consequence is that suboptimal decisions are taken. 
 
In this paper, a novel method is suggested to achieve the best possible, i.e. optimal, 
efficiency at any moment in time. This has achieved an efficiency increase of 1.1% 
absolute in a real coal power plant. Moreover, this efficiency increase is available 
uniformly over time effectively increasing the base output capability of the plant. 
 

 
Figure 1: The main constituents of a coal power plant. 
 
 
2. Methodology 
Sensor equipment is installed in all important parts of the plant and thus alerting the 
operator via the control system about the current state of the plant. The numerical 
values of all sensors can be arranged into a vector. Let us assume that we have a 
total of N measurements on and around the plant that we wish to look at. We may 
represent the state of the plant at time t by an N-dimensional vector, x(t). Via the data 



historian, we may obtain a set of such vectors for past times. If we order this set with 
respect to time, then this set is called a time-series, H = (x(-h), x(1-h), x(2-h), … , x(0)) 
where time t = 0 is the current moment and time t = -h is the most distant moment in 
the past that we wish to look at. Thus the time-series H is effectively a matrix with 
h+1 columns and N rows. 
 
Observe that this matrix contains all the decisions of the operators and all the 
reactions of plant to these decisions. The knowledge and experience of the operators 
is thus plainly visible in the data. If the history is long and detailed enough, this 
information is effectively all one needs to know about this plant. 
 
We recall the topic of control theory. Here we are faced with a black box that has 
input signals and output signals. The process that connects input to output is totally 
unknown and represented by the black box. Control theory now aims to discover the 
relationship between input and output by performing experiments. If we send such a 
signal in, then we observe such a signal as output. Given enough such data and 
some analysis, control theory provides tools for creating a set of equations that 
govern the behavior of the black box. The resulting set of equations is called a 
mathematical model. 
 
Note that the model does not allow us to ‘understand’ the process inside the black 
box. But it does allow us to compute the output of the black box given a sample input. 
Using the results of optimization theory, we can reverse this process and compute 
the input needed to achieve a given desired output. 
 
Control theory is meant to be applied manually. For a process as complex as that of 
a power plant, this is impractical due to the amount of work that would be required. It 
is suggested to use machine learning [1] to develop the set of equations 
automatically. There are various techniques available to achieve this such as neural 
networks [2]. We opt for the technique of recurrent neural networks [3]. Here we must 
differentiate classificatory neural networks [2] from recurrent neural networks [3]. The 
first can tell the difference between a finite number of types of objects while the 
second can represent the evolution over time. 
 
The advantages of using machine learning are that the model is produced within a 
very short time (usually days), that it is adaptive (i.e. it learns continuously as it 
experiences more data), that it can change to match new situations (the new data is 
learnt) and that the entire problem can be modeled (and not a simplified version as in 
the manual approach). Thus, this method is economical. 
 
In the state vector that describes the plant, there are elements of three different 
types. First, there are measurements that can be directly controlled by the operator. 
An example is the amount of coal per hour being put into a particular mill. We call 
these controllable, xc

(t). Second, there are measurements that cannot be controlled 
at all by the operators and thus represent a state of the world. An example is the 
outside air temperature. We call these uncontrollable, xu

(t). Third, there are 
measurements that are indirectly controlled via the controllable measurements. An 
example is a vibration in the turbine. We call these semi-controllable, xs

(t). 
 



Uncontrollable measurements provide boundary conditions for the problem and so 
we really have a set of models depending on the boundary conditions. This poses no 
problem for machine learning and is simply included in the model of the black box 
that is the plant. The only requirement is that it must be clearly defined which 
measurements belong into which of the three possible groups. Once this is known, 
the learning may begin. 
 
What we obtain is a function f( xc

(t) ; xu
(t) ) = xs

(t). In words, this means that we have a 
function with the controllable measurements as variables, the uncontrollable 
measurements as given parameters and the semi-controllable measurements are 
functional outputs. The plant efficiency is, of course, among the semi-controllable 
outputs of the function f(…). 
 
With this model and given a particular boundary condition xu

(t), we may compute the 
reaction of the plant xs

(t) to any particular operator decision xc
(t). This is effectively a 

plant simulation. Such a system may be used for training and practice of the 
operators. 
 
More interestingly, we ask whether the function may be inverted, i.e. whether the 
function 
f-1( xs

(t) ; xu
(t) ) = xc

(t) can be obtained. Generally, it is not possible to invert functions 
directly. However, we do not require a closed form solution of this problem but only a 
numerical solution. This may be achieved using the theory of numerical methods [4]. 
 
In particular, we are not necessarily interested in general inversion but rather in a 
very special form of inversion, namely optimization. Given particular boundary 
conditions, we would wish to know what input variables lead to the optimal state of 
the plant. The optimum state is defined by some merit function g( xs

(t) ; xu
(t) ). The 

simplest such merit function is the plant efficiency but we may also take into account 
market prices and other business features to define what we believe to be the 
optimum. 
 
Thus we ask, what is xc

(t) such that g( xs
(t) ; xu

(t) ) achieves a global maximum where 
the relationship between the variable vector and the merit function is contained in the 
inverted model f-1( xs

(t) ; xu
(t) ) = xc

(t). This is a classic optimization problem. As the 
functions are only known numerically and they are highly non-linear and time-
dependent, this is a complicated optimization problem requiring state-of-the-art 
treatment but such problems can be solved. 
 
 
3. Theoretical limitations 
Of course, whatever methods we choose, they cannot have arbitrary accuracy or 
stability. Thus, every x(t) has an inherent measurement induced uncertainty ∆x(t) 
attached to it. This means that the true value of the state vector is somewhere in the 
range [x(t) - ∆x(t), x(t) + ∆x(t)]. 
 
Please note that no measurements made in the real world are ever completely 
precise. There are random and structured errors associated with the measurement 
process, also physical sensors drift with age and environmental effects. All of these 
must be taken into account to determine a reasonable measurement uncertainty ∆x(t). 



 
A further limitation is the length of the history. The history must contain a record of 
the variations that are to be expected in the future so that these variations, 
correlations and other structures may be included in the model. It is thus desirable 
that the history be as large as possible and also the time unit (governing the 
frequency of measurements) be as small as possible. Together these two define a 
history that contains the maximum available knowledge about the system. 
 
Our efforts are thus limited by three fundamental factors: (1) The number and identity 
of the measurements made, (2) the length, frequency and variability of recorded 
history and (3) the inherent accuracy of a measurement itself. Together these three 
factors will determine whether a reliable and stable model can be found. 
 
 
4. Application 
Initially, the machine learning algorithm was provided with no data. Then the points 
measured were presented to the algorithm one by one, starting with the first 
measured point x(-h). Slowly, the model learned more and more about the system and 
the quality of its representation improved. Once even the last measured point x(0) was 
presented to the algorithm, it was found that the model correctly represents the 
system. 
 
In a particular power plant, the history covered nine months of data extracted once 
per minute for nearly 2000 measurements. After modeling, the accuracy of the 
function deviated from the real measured output by less than 0.1%. This indicates 
that the machine learning method is actually capable of finding a good model and 
also that the recurrent neural network is a good way of representing the model. 
 
Controllable variables include settings on the furnace such as the coal loading into 
the furnace and the provision of air for the furnace. Also some operational settings 
(set-points) of the turbine and the generator were available. Boundary conditions 
were provided by coal quality, the power output of the plant and various weather 
effects such as the air temperature and humidity and also the cooling water 
temperature. 
 
The model was then inverted for optimization of plant efficiency. The computation 
was done for the entire history available and it was found that the optimal point 
deviated from the actually achieved points by 1.1% efficiency in absolute terms. 
Moving from, say 40%, to 41.1% efficiency is a significant gain for any power plant. 
 
In the analysis nearly 1000 different operational conditions (in the nine month history) 
were identified that the operators would have to react to. This is not practical. The 
model is now capable of determining the current state of the plant, computing the 
optimal reaction to these conditions and communicating this optimal reaction to the 
operators. The operators then implement this suggestion and the plant efficiency is 
monitored. It is found that 1.1% efficiency increase can be achieved uniformly over 
the long term. 
 



The model can provide this help continuously. As the plant changes, these changes 
are reflected in the data and the model learns this information continuously. Thus, the 
model is always current and can always deliver the optimal state. 
 
In daily operations, this means that the operators are given advice whenever the 
model computes that the optimal point is different from the current point. The 
operators then have the responsibility to implement the decision or to veto it. 
 
For those parts of the power plant that are already automated, the model is valuable 
also. Automation generally functions by humans programming a certain response 
curve into the controller. This curve is obtained by experience and is generally not 
optimal. The model can provide an optimal response curve. Based on this, the 
programming of the automation can be changed and the efficiency increases. The 
model is thus advantageous for both manual and automated parts of the power plant. 
 
Effectively the model represents a virtual power plant that acts identically to the real 
one. The virtual one can thus act as a proxy on that we can dry run all sorts of 
strategies and then port these to the real power plant only if they are good. That is 
the basic principle of the approach. The novelty here is that we have demonstrated 
on a real power plant, that it is possible to generate a representative and correct 
model based on machine learning of historical process data. This model is more 
accurate, all encompassing, more detailed, more robust and more applicable to the 
real power plant than any human engineered model possibly could be. 
 
 
5. Conclusion 
This approach leads to three major conclusions: 
 

1. It is possible to increase the energy efficiency of an industrial facility by using 
a mathematical model of the process – without having to invest in equipment. 

2. This model can be constructed using machine learning thus saving the cost of 
a human engineered model and offering the advantage of being flexible and 
accurate. 

3. This approach will increase the energy efficiency of a coal power plant by over 
1%, chemical plants by over 8% and refineries by over 6%. 

 
This technology has been successfully demonstrated in various industrial facilities in 
Europe, North-America and Asia. 
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