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Fig. 1. Shells which display a clearly braided pattern (found by the author in
Cetraro, Italy).

Summary. We introduce braids via their historical roots and uses, make connec-
tions with knot theory and present the mathematical theory of braids through the
braid group. Several basic mathematical properties of braids are explored and equiv-
alence problems under several conditions defined and partly solved. The connection
with knots is spelled out in detail and translation methods are presented. Finally
a number of applications of braid theory are given. The presentation is pedagogi-
cal and principally aimed at interested readers from different fields of mathematics
and natural science. The discussions are as self-contained as can be expected within
the space limits and require very little previous mathematical knowledge. Litera-
ture references are given throughout to the original papers and to overview sources
where more can be learned.

A short discussion of the topics presented follows. First, we give a historical
overview of the origins of braid and knot theory (1). Topology as a whole is intro-
duced (2.1) and we proceed to present braids in connection with knots (2.2), braids
as topological objects (2.3), a group structure on braids (2.4) with several presenta-
tions (2.5) and two topological invariants arising from the braid group (2.6). Several
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properties of braids are then proven (2.7) and some algorithmic problems presented
(2.8).

Braids in their connection with knots are discussed by first giving a notation
for knots (3.1) and then illustrating how to turn a braid into a knot (3.2) for which
an example is given (3.3). The problem of turning a knot into a braid is approached
in two ways (3.4 and 3.5) and then the a complete invariant for knots is discussed
(3.6) by means of an example.

The classification of knots is at the center of the theory. This problem can be
approached via braid theory in several stages. The word problem is solved in two
ways, Garside’s original (4.1) and a novel method (4.2). Then the conjugacy prob-
lem is presented through Garside’s original algorithm (4.3) and a new one (4.4).
Markov’s theorem allows this to be extended to classify knots but an algorithmic so-
lution is still outstanding as will be discussed (4.5). Another important algorithmic
problem, that of finding the shortest equal braid is presented at length (4.6).

We close with a list of interesting open problems (5).

Key words: braids, knots, invariants, word problem, conjugacy problem, rewriting
systems, fluid dynamics, path integration, quantum field theory, DNA, ideal knots
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1 Physical Knots and Braids: A History and Overview

(a)

Fig. 2. (a) The simplest method of constructing a braid is to intertwine two strings
by exchanging their endpoints and (b) the result of the simple exchange.

Possibly the most important difference between physical and mathemat-
ical knots is that mathematics requires the string to be closed. That means
that after we tie the knot into a rope, we must glue the ends of the rope
together and never undo them. The reason for this is that we are about to
consider knots identical if we can continuously deform them into each other.
If we had a rope with ends, we could untie the knot and thus every knot
would be equal to a segment of straight rope.

Fig. 3. (a) The points 1 and 3 and the points 2 and 4 form pairs which interchange
their positions in turn, thus generating a braid and (b) the three points exchange
positions with their image points (drawn in dashed circles) in turn.
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The question of how braids are made is interesting in its own right. Sup-
pose that we have n strings which are fixed at one end (we shall call this
the top end) on a straight line and hang down vertically. The other ends are
free to move in a horizontal plane P (the bottom end) below the top end.
We further label each string by a number from one to n in order from left to
right at the top end. Let the intersection of string ¢ and plane P be labelled
1 also. We may now discuss the braid construction as a series of moves of the
points 1 to n in the plane P relative to each other.

5cm

Fig. 4. The braid which results from the motion described in figure 3 (b) with the
relative positions of the points at the bottom of each horizontal section.

Let us begin with two points in P which interchange positions at every
move, see figure 2 (a). This generates a braid on two strings which looks
like figure 2 (b). The natural next step is to consider four points arranged
in a square which interchange across the diagonals in turn, see figure 3 (a).
This construction method is identical to taking the outer string of a four
strand braid and passing it over two and under the string just overcrossed.
We alternate between using the left and the right outer string for doing this.

Another way to generalist the scheme of figure 2 (a) is to introduce image
points, see figure 3 (b). The image points differ from real points in that
there are no strings attached to them. We exchange point and image point
in numerical order. The way of constructing a braid shown in figure 3 (b) is
one in which each string moves to a point which is its reflected image across
the line joining the other two points. This is how the configuration naturally
embeds itself into an equilateral triangle.

It is not easy to see what the resultant braid for the construction in
figure 3 (b) is so we have drawn it together with the relative positions of the
points in figure 4. Note that each exchange of a point with its image point in
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this scheme generates two crossings in the braid. What is interesting in this
example is that we require six exchanges before the points in the plane return
to their original relative positions while the braid pattern repeats itself after
only two exchanges. The three dimensional structure is thus simpler than the
two dimensional dynamical system which gives rise to it. This is an interesting
property which can be exploited to classify fundamentally distinct motions
in dynamical systems. It should be mentioned that the braid construction of
figure 3 (b) is the most optimal way to stir a dye into a liquid [26]. The three
points would be rods or paddles of some kind which would be submerged
in the liquid and follow the motion prescribed. If one were to record their
positions over time then one would obtain figure 4 where the time axis runs
vertically upwards.

2 Braids and the Braid Group

2.1 The Topological Idea

Topology is a branch of mathematics that studies the shape of objects inde-
pendent of their size or position. If we can deform one object into another
by a continuous transformation, then we shall call these objects topologically
equivalent. In everyday terms this means that we may bend, stretch, dent,
smoothen, move, blow up or deflate an object but we are not allowed to cut
or to glue anything. An example of what we may do is shown in figure 5 in
which it is shown by an explicit deformation that one can get from a linked
structure to an unlinked structure.

Take for example the doughnut (also called the torus) and the sphere.
These two objects are topologically inequivalent. This can be seen easily by
observing that the doughnut has a hole while the sphere does not. We can
only get rid of the hole by a discontinuous transformation, i.e. in the process
of transforming the doughnut into the sphere there will be an instant at which
the hole disappears. This is not allowed in topology and so we have motivated
that there are topologically different objects.

2.2 The Origin of Braid Theory

Few areas of research can trace their origins as precisely as braid theory.
Braid theory, as a mathematical discipline, began in 1925 when Emil Artin
published his Theorie der Zipfe [6]. A few problems in this first paper were
quickly corrected [7] and the study was made algebraic soon thereafter [25].
As we shall see throughout this chapter, braids are closely related to knots
and we need to look at knots to appreciate braids fully.

Knot theory was started in the 1860’s by Peter Guthrie Tait, a Scot-
tish mathematician, who endeavored to make a list of topologically distinct
knots in response to a request by William Thompson (later Lord Kelvin)
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Fig. 5. This sequence of pictures shows how an initially linked structure (1) is
slowly transformed into an unlinked structure (5) by a continuous transformation
three stages of which are shown.

o 5 o oS =N\
(1 :< Ding ><
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-

Fig. 6. The Reidemeister moves.
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who thought that knotted vortex tubes in the luminiferous ether would make
a good model for the elusive atomic theory. This physical application was
abandoned when it became clear the the ether did not exist through the
Michelson-Morley experiment in 1887. In spite of this, the mathematics was
here to stay. Tait first published his work in 1877 at which time he was able
to present a long list of knots. It was his purpose to construct the list in order
of increasing number of crossings in the knot.

6

Fig. 7. The (a) trefoil knot and (b) its mirror image.

How can we tell if a knot is the same as another? Reidemeister has pro-
vided us with a convenient way to tell. He proved that the moves in figure 6
are sufficient to get from any diagram of a knot to any equivalent diagram
[65]. Reidemeister’s moves are extremely simple, it is almost obvious that
they are sufficient to move between any two equivalent diagrams. Actually
producing a sequence of moves for two particular diagrams however, is a non-
trivial task. As a result, the moves have found their main use in proofs that
certain quantities are identical for all diagrams of a particular knot. We call
such quantities invariants and they can be integers, real numbers, polyno-
mials, groups, manifolds and other mathematical objects. For example the
number of components or closed loops of a knot is an integer invariant as the
Reidemeister moves do not perform surgery (cutting or gluing).

Exercise 2.1. Convince yourself that any topological equivalence move pos-
sible on a knot can be reduced to Reidemeister moves.

There is only one knot of no crossings — a simple loop of rope — which
is called the unknot (recall that a mathematical knot exists on rope without
ends). No knot of one crossing can exist as this would simply be a twist of
one end of the unknot and can just as easily be undone. This twist is the
Reidemeister move zero in reverse, see figure 6. The same applies to any
knot of two crossings. Matters become more challenging with three crossings
because we hit the trefoil knot.

The trefoil knot (see figure 7 (a)) is the knot we usually tie into a shoelace
before tying a bow on top of it. Is the trefoil knot the only knot of three
crossings? We investigate this question by drawing three double points in the
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plane (do not differentiate between over and undercrossings yet) which are
the intersections of two short line segments each. Then connect the endpoints
of the line segments in all possible ways without causing further crossings in
the plane. You will find that all of these will unravel to give the unknot
by Reidemeister moves of type zero except the trefoil knot. The trefoil knot
comes in two natural flavours: the standard type (figure 7 (a)) and the mirror
image of the standard type (figure 7 (b)). The mirror image of a knot is
obtained by switching all of its crossings (see figure 7 (b)). This method is
essentially the one which Rev. Kirkman used in the 19*" century to construct
a list of all knots up to and including ten crossings. The labour involved in
this task is prodigious. To complete the list of all knots of three crossings we
must ask:

Fig. 8. The prime knots with fewer than seven crossings and their names from
standard tables. The knot 3; is the trefoil knot of figure 7 (a).

Exercise 2.2. Is the trefoil equivalent to its mirror image? [Hint: This means
that you have to find a continuous deformation of the trefoil into its mirror
image if they are equivalent or a proof that it is not possible otherwise. The
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typical method is to look for an invariant if you suspect that they are not
equivalent. If you can show that the value of the invariant is different for the
two knots, then you have shown that they are different.]

The answer to exercise 2.2 is that the trefoil is not equivalent to its mirror
image. This is shown by computing an invariant quantity called Alexander
polynomial for both knots. We will compute the polynomials for both trefoils
in section 2.5.

We will motivate the result here by computing a quantity called writhe
which is an invariant of all the Reidemeister moves except the zeroth one.
Imagine you want to hang a painting on the wall and you are putting a screw
into the wall to hold the painting up. You twist the screw clockwise to get it
into the wall and counterclockwise when you’ve made a mistake and wish to
get it out again. We consider progress positive and mistakes negative so that
a crossing in a knot which is achieved by a clockwise rotation of the hands
as they follow the orientation of the knot is assigned a weighting of +1; the
opposite kind is assigned a weight of —1. The writhe w of a knot is the sum
of the weights over all the crossings. Let us pick the orientation in which the
topmost arch on the trefoils in figure 7 points to the left. Then the standard
trefoil has w = 3 and the mirror image w = —3.

Exercise 2.3. Prove that writhe is invariant for all Reidemeister moves ex-
cept move zero.

Using such methods, it is possible to construct a large table of knots.
In figure 8 we show the first seven knots after the unknot. It is understood
that the two ends of the rope must be joined to yield the mathematical
knot. We present them in this fashion for ease of understanding and practical
experimentation.

The question is: Can we find a general method to determine equality
or otherwise for any two knots? The answer is yes, but with qualifications.
There exists a method due to Waldhausen, Hakken, Hemion and others but
it is so inefficient that it is not possible to use for knots for which we do not
know the answer already [39]. There exists a theorem due to Alexander which
states that every knot can be represented by a braid [4] which we prove in
theorem 2.9. This gave the motivation for people to study braids in order
to try to help classify knots. The greatest thrust came from Markov who
proved a result for braids similar to Reidemeister move result for knots [55].
Using Markov’s theorem to classify knots has proven difficult however and
the search continues.

Braids have proven tremendously useful in spite of the fact that they have
not lead to a complete knot classification scheme. Many invariant of knots
are naturally defined on braids. The most revolutionary invariant, the Jones
polynomial, was discovered using braid theory. Beyond this, braids have many
applications to various fields as we shall discover in the sections to come.
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An operation to combine knots can be defined which we are going to call
knot addition and denote it by #.

Definition 2.4. Given two knots K and L, we define the knot sum K#L as
the knot obtained by cutting both K and L at a random location and gluing
them together with respect to their orientations.

This is a simple operation but it is not at all obvious that it is well defined.
One can show that: (1) The sum is independent of the points on K and L
chosen as cutting points [60], (2) any knot can be uniquely factorized into a
finite length sum of knots [67], (3) this sum may actually be determined [68].
Property (1) makes the concept well-defined. The second property establishes
the existence of prime knots, i.e. knots that may not be decomposed into the
sum of others and also that classifying prime knots will classify all knots.
The third property means that this is, at least in theory, possible to actually
compute. However, the algorithm to find the unique decomposition is the
algorithm alluded to previously and thus this is not a practical method. It
can be shown that there does not, in general, exist an inverse to the operation
of addition of knots. As one may show that knot addition is associative, knots
form a semi-group but not a group under the operation of addition [60].

2.3 The Topological Braid

Iy a, 3, 3
K A
\ |

l, b, b, b,
(a)

Fig. 9. (a) An example of the definition of a topological braid (see definition 2.5)
and (b) an elementary deformation as defined in definition 2.6.

We know from section 1 what a braid is. Mathematically, we have to be
slightly more careful.

Definition 2.5 (n-braid). Let Iy and ly be two parallel lines in a plane
P and let A = {a1,a9, - ,a,} and B = {b1,ba, -+ ,b,} be sets of points
on ly and ly respectively. An n-braid is a set of (possibly oriented) n non-
intersecting polygonal curves which have exactly one endpoint in A and one
in B such that all points in A or B are the endpoints of exactly one of these
curves and such that any line [ parallel to l1 and Iy crosses any curve in at
most one point.
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An example of a 3-braid, in which we have labelled the lines [y and I as
well as the point sets A and B, is shown in figure 9 (a); note that the plane P
is understood to be the plane of the paper. In this example, we have 3 curves
each of which have two endpoints, one in A and one in B. These curves go
from [y to lo monotonically, they do not double back on themselves. This is
the meaning that no line parallel to /1 and s may cross any curve in more
than one point. In fact it is this requirement that makes braids substantially
simpler than knots and allows a group structure to be defined on braids. An
n-braid in the form of definition 2.5 is also called an open braid. We shall
drop the n from n-braid when no confusion can arise.

The normal braid which is braided into peoples’ hair fulfills these require-
ments. One end of all the strings is fixed on the person’s head and others are
held in place by some form of rubber band. The braiding in the middle is done
in a way that each bundle of hairs goes from top to bottom monotonically.
Some Celtic designs used as borders in the Book of Kells or other illuminated
books or more commonly used as trimmings for medieval clothing, necklaces,
pendants and belts are not usually braids conforming to this definition as
their strings often return to a point close to their origin and thus contain a
local maximum or minimum.

Whenever we define a new mathematical object, we desire an equivalence
relation for the possible instances of this object. As braid theory is a topo-
logical pursuit, we will allow ourselves the usual freedom of topology which
means that we will allow the object to be distorted in any way as long as this
can be done continuously. So we may bend, stretch and pull a string but we
may never cut a string or glue two strings together; such actions are called
surgery and are said to change the topology. For braids, it is clear that if
we do not fix the endpoints of the curves, we shall be able to transform any
braid into any other yielding a rather boring theory; thus we also require the
ends to be fixed. We will call the equivalence relation for braids under these
conditions isotopy. Before we can define isotopy, we must define what we
mean by a topological deformation. An elementary deformation is the basis
for all topological deformations.

Definition 2.6 (elementary deformation). Suppose that a braid string
(recall that it was defined as a polygonal curve) has points A and B as vertices.
We may then create a further point C, delete the segment AB and create
the segments AC and CB. This deformation, and its inverse, is called an
elementary deformation if and only if the triangle ABC does not intersect
any other strings and only meets the current string along its side AB. See
figure 9 (b) for an illustration.

Definition 2.7 (braid isotopy). Two braids o and 5 are called isotopic,
denoted o =~ 3, if and only if o can be transformed into B using a finite
number of elementary deformations.
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Suppose we were to label the string which intersects the point b; by . On
lo, the string labels from left to right would thus be in numerical order whereas
on [1 they may not be ordered numerically. If we list the numerical labels of
the strings which intersect [; from left to right, we obtain a permutation
on the set of integers {1,2,---,n}. A braid thus induces a permutation on
the set of the first n integers. For example, the braid in figure 9 induces the
permutation [2, 3, 1]. The fact that the induced permutation is an equivalence
class invariant follows immediately from the requirement that the endpoints
be fixed.

Fig. 10. The braid from figure 9 is closed here. It is immediate upon simple trans-
formation that this knot is the same as the simple loop or the unknot.

An open braid may be closed to yield a knot. See figure 10 for the closure
of the braid from figure 9. A closed braid, denoted @, is obtained from an
open n-braid a by deleting I and I and connecting points a; and b; with
non-intersecting polygonal curves in P for all i : 1 <4 < n. It is clear that
the closure of any braid yields a knot. Thus some knots may be represented
as closed braids. Unfortunately determining the closed braid, given a knot, is
not so easy. It is however possible and we shall solve this problem in sections
3.4 and 3.5. The proof of the fact that all knots may be represented as closed
braids, Alexander’s theorem, gave the initial momentum for studying braids
in detail [4]. Artin took up the challenge and constructed a theory of braids
with a view to use them to deal with knots.

Exercise 2.8. A simple knot invariant is the number of components a knot
has. Show that the number of components of the knot @ is equal to the
number of cycles in the permutation that the braid « induces.

Alexander’s theorem is usually proved by giving a topological method
with which to deform a knot into a closed braid. There exist several distinct
methods of doing so but most are not suitable for use; they are only employed
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to establish the theorem. The proof given here is fundamentally different and
new to the best knowledge of the author. The theorem assumes that the knot
is oriented but if not the transformation is accurate up to orientation change.

Theorem 2.9 (Alexander [4]). Every knot may be represented as a closed
braid.

Proof. Consider an oriented straight line @ in R® which we will call the axis.
Choose a point O on a and construct a cylindrical polar coordinate system
which has O as its origin. The positive z, or upward vertical, direction is
directed parallel to a in the direction of its orientation. The polar angle ¢
increases in the counterclockwise direction, as usual. Using this system, the
theorem claims that every knot K can be deformed with respect to a in
such a way that the polar angle of a point P going along any component
of K strictly increases or more simply: As we travel along the knot we will
go around the axis a without ever changing our counterclockwise direction.
Suppose we have n straight line segments s; for 1 < ¢ < n with endpoints
R; and S; such that the polar angle of S;, ¢(S;) is is larger than ¢(R;).
We may form any knot by subdividing these segments into a finite number
of straight subsegments, moving the endpoints of the subsegments and per-
forming surgery which identifies R; and S; for all i. Here, we will form the
knot K by keeping R; fixed and moving the point .S; creating new points Q; ;
indexed by j as necessary. Whenever it becomes necessary to move S; to a
position of lower polar angle than the last @); ; created, move S; once around
a creating a suitable number of points doing so and then continuing. After
the required knot is formed, we perform the surgery of identifying R; and S;.
By definition of a knot as a polygonal curve such a construction is always
possible.

An example of this method applied to forming the trefoil knot is given in
figure 11. This proves the theorem. a

2.4 The Braid Group

We note that any braid can be represented by a vertical stack of two types
of crossing, see figure 12. When all strings are vertical apart from strings 4
and 7 + 1, we will denote this crossing by o; or o; ! depending on whether
string ¢ overcrosses or undercrosses string ¢ + 1 respectively. It is thus clear
that any braid can be specified by a string of these symbols. We agree to
the convention that the left to right direction of the symbols representing
a braid shall correspond to the upward direction of the braid; that is, the
lowest crossing corresponds to the first symbol. This is a convention and
some other authors use the opposite convention. While care is required, no
serious consequences arise from this choice. For example, the braid in figure
2 (b) is 0} (the power means that the symbol o; was repeated five times)

and the braid in figure 4 is (0102_101_102)3. From now on, we shall denote a
braid by these symbols.
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Fig. 11. Constructing the trefoil knot as a closed braid, see proof of theorem 2.9
for a discussion.

O; ® e 0 \ e 0o 0
)
1 2 i-1 i i+l i+2 n-1 n
6:1 e o0 } e o e
(
1 2 i-1 i i+l it+2 n-1 n

Fig. 12. The generator o; and its inverse o, ! for the braid group B..

Definition 2.10 (braid word). We will call any sequence of aiil a braid
word.

Definition 2.11 (positive and negative braid word). If a braid word
contains only o; (and no 0;1) then it will be called positive. However, if it
is contains only 0;1 (and no o;) then it will be called negative.

Consider the braid o3o; displayed in figure 13 (1a). This braid is clearly
topological equivalent to the braid oio3 displayed in figure 13 (1b). More
generally, every time two neighboring crossings are on distinct pairs of strings,
the order in which these crossings are listed in the braid word does not
topologically matter. Thus we arrive at the rule that

oi0j = 0;0; for i —j| > 1 (1)
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Fig. 13. (1) Two non-interfering crossings can be listed in either order and (2) a
crossing may be moved underneath an arch which overcrosses both strings involved

which is usually called the far commutation relation as it embodies the fact
that generators sufficiently far from each other commute.

It also becomes clear that if we have an arch which over or undercrosses
two strings which then cross (see figure 13 (2a)), this crossing may be moved
onto the other side of the arch (see figure 13 (2b)). Thus the braids o020
and 090109 are topologically equivalent. As this can hold anywhere in a braid,
we arrive at the second rule that

Oi0i110; R 054100411 (2)

which is typically called the braid relation. We find this name too vague and
so we will refer to this relation as the bridge relation as it symbolizes that
anything not in conflict with the principal pillars may move freely both below
and above a bridge.

After some experimentation, one notices that all the moves one may make
on a braid while preserving its topology can be reduced to applying the rules
in equations 1 and 2 to the braid word. We would like to prove that this is
always so.

Theorem 2.12. (Artin [6] [7]) The equivalence relation upon braid words
defined by the relations 1 and 2 is identical to the equivalence relation of
braid isotopy (see definition 2.7) upon the braids represented by the braid
words.

Proof. Recall that any knot may be represented as a closed braid. The braid
contains all the crossings and Reidemeister’s moves define equivalence of
knots. Thus braid equivalence is Reidemeister equivalence of the braid. Move
zero would create an object which is not a braid but the others apply. Trans-
lating these into the o; notation and simplifying yields the given presentation.
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From figure 12, it is clear that o, 1 is the inverse of ;. As we represent a
braid by a braid word in the o; from the bottom up, we can easily concatenate
two braids together. The braid a3 is constructed from the braids o and 3 by
identifying the top ends of a with the bottom ends of 5. It is obvious that
concatenation is associative, i.e. (af)y = a(f87v) and that the concatenation
of two braids is a braid. Suppose ¢ is the braid of n vertical strings and no
crossings. We have ta = av = « for any n-braid a. The braid ¢ acts as an
identity. Since we have closure, associativity, inverses and an identity, the set
of n-braids forms a group generated by the generators o;. We will denote this
group by B,, and refer to this family of groups as the braid groups. Because
of theorem 2.12, B,, has the presentation

_ . . 0i0i+104 = 0i+10i0i+1,
Bn—<{017027 aan—l}' 0,05 N 0;0; for |Z—j|>1> (3)

It is instructive to consider the braid group from another point of view
which curiously leads to the same presentation as given above in equation
3. Consider the space between the two parallel planes which contain /; and
l2 respectively after the braid has been removed from it. This space has a
fundamental group which may be represented by a series of loops beginning
and ending on some randomly chosen base point b and going around the
removed braid strings. There are n distinct such loops which we shall call x;
with ¢ running from 1 to n. The fundamental group is free of rank n with
the x; as generators. x1 is the loop around the first string from the left on
each level and so on for the other x;. From level to level a reassignment
of generators becomes necessary. This is called an automorphism and the
particular one we need here, a; is defined by

a; @ Ti — Titl; Tivl — x;_llxixiﬂ; Tp —xp (DF 1,1+ 1) (4)

The map « : 0; — a; is a homomorphism of B, into the automorphism
group of F,,, the free group of rank n. It can be shown that the a; generate
a group with presentation identical to equation 3 under the homomorphism
«. In other words, a braid word may be regarded as an automorphism of F,.
As the mapping merely consists of a change of symbol for the generators, it
is frequently useful not to make a distinction between a braid word as an
element of B,, and as an automorphism of F),. In the next section, we will
introduce some other presentations of the braid group.

2.5 Other Presentations of the Braid Group

The presentation of B,, given in equation 3 is called the Artin presentation as
it was Artin who first used it in the paper which founded the field. The fact
that braids admit a group structure simplifies their treatment tremendously.
It can be shown that knots do not admit a group structure and this is one
reason why the problem of deciding if two knots are equal is so different from
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the similar question about braids. It is difficult, however to extract useful
information from a presentation of a group. For this reason it is useful to
search for other presentations of the same group with special properties.

The Artin presentation has the appeal that it is very topological. It is easy
to draw the braid given the braid word and it is easy to read off the braid
word from a braid. Furthermore, both the far commutation and the bridge
relations are simple to perform. One disadvantage is that each braid group
has a different number of generators. Consider putting a = o109 -+ - 0,1 and
o = o1. After some manipulation, we find the presentation

Bn = <{a’0} a" ~ (a0)" !, caiod! ~aVoalo for 2 < j < g> (5)

which we call the Cozeter presentation. The Coxeter presentation has the
advantage that all braid groups have just two generators but we have lost
some of the topological correspondence.

It would be nice to have a matrix representation of the braid groups. To
this end, we will represent the identity matrix of n rows and columns by
I,, (recall that the identity matrix has unity entries in the leading diagonal
and zeros everywhere else). Then we define the mapping ¢, (0;) of an Artin
generator o; to a matrix of n rows and n columns whose entries are Laurent
polynomials in the variable ¢ (Laurent polynomials allow both positive and
negative powers of the variable). Expressed formally, this means

¢n : By — GL (n,Z [t*']) (6)
where Z is the ring of polynomials. The mapping is defined by

Ly 00 0
01—ttt 0
o) =1 9 1 0 o0 @

0 0 O0Zl,—i—1

It can easily be shown that ¢, is a homomorphism, i.e. that ¢,(c;0;) =
¢n(07)$n(0;) where multiplication in GL (n, Z [t*]) is the usual matrix mul-
tiplication. A representation is termed faithful when the mapping ¢ giving
rise to it is injective, i.e. when z # y implies ¢(x) # ¢(y). This representa-
tion is faithful for n < 3 [54] and not for n > 5 [13]. For n = 4 the answer is
unknown.

It should now be easy to write down a matrix representation for any braid
word. For example, if n = 3, then for ¢, (c102) we have

1—tt0 1 0 0 1—tt—1t2¢2
bn(01)n(02) = 1 00 01—ttt | = 1 0 0 (8)
0 01 01 0 0 1 0

This representation is called the Burau representation.
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Recently a new presentation was invented by Birman, Ko and Lee [15]
which they used to solve the word and conjugacy problem in a new way. The
generators ay; are defined by

agl = (Ok—10k—2 - 0141) 01 (Uﬁrlldﬁrlg . 'U;Z_ll) 9)

Topologically this is a crossing between two arbitrary braid strings k and .
In ay, string k overcrosses string [ and both strings overcross all other string
in between them to be able to cross and then overcross the in between strings
again to return to their original (but now switched) positions. Using these
generators, B,, has the presentation

AtsQgr = AtrQts = QsrQir,
B, =({as;n>1t>5>1}: apsapq = arqays for (10)
t=r)t—q)(s—7)(s—q)>0

which we call the band-generator presentation. In the Artin representation,
we number the strings from left to right on each level. Suppose we were to
label each string with a unique label which it would carry throughout the
braid. At the bottom of the braid, we number the strings from one to n as we
go from left to right. Each crossing in which string i overcrosses string j is
labelled with the generator g;;. This presentation is called the colored braid
presentation as the string labels act like each string was made of a separate
color. This representation retains the complete information of the braid but
it is not immediately apparent whether a crossing is positive or negative in
the Artin sense. Note that this feature means that the generators g;; are self
inverse, gfj ~ e the identity. We easily write down the braid group relations
in this presentation to get

.. 9i59ik9ik = 9ik9ikTij,
1< <
B, = <{gij} for Z; R 9ij gkl = grigi; for > (11)
g (i— k)i =D~ k)G —1)>0

We note that in the colored braid presentation, the fundamental braid A,
takes the form

Ap = 912913 91nG23924 " " Gn—-1n (12)
n—1 n
=11 II 9 (13)
i=1 j=it1

2.6 The Alexander and Jones Polynomials

The Burau representation of the braid group is important in the definition
of a revolutionary knot-invariant called the Alezander polynomial. We begin
with a braid word «, construct its Burau representation ¢,,(«) and take the
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determinant of the matrix [¢p () — I,]1,1 where the subscript indicates that
the first row and column should be deleted. This determinant can be shown
to be a topological invariant of the closure of the braid « and is denoted by
Az such that

Ag(t) = det[pn(a) = In]1a (14)

Thus the Alexander polynomial of the braid oy09 of the above example is
A = 1 which happens to be the same value as the Alexander polynomial
for the unknot. While 703 is actually isotopic to the unknot, we could not
conclude this from its Alexander polynomial. The Alexander polynomial is
an incomplete invariant in that we can only say that if Ax # Ag/, then
K # K'. The converse is not true, in general. Nevertheless, the Alexander
polynomial is very important in knot theory. Let us compute the Alexander
polynomial for both trefoils (see figure 7). The ordinary trefoil is the closure
of o} and its mirror is the closure of o, . Now we have

nE@)=("3"8) e =("07 %)

and thus
NA—=t3—1 NA—=t3-1 (16)
71 1

And since the Alexander polynomials of the two trefoils are distinct, the knots
must be distinct.

Many other polynomials invariants have been devised after the Alexander
polynomial, the most important is the Jones polynomial. The Jones polyno-
mial is also an incomplete invariant of knots which was originally constructed
in terms of braids. We shall not prove that it is an invariant, nor that it is
incomplete but we shall give an easy method to obtain it. Even though it is
incomplete, it is a very powerful invariant in that it distinguishes many knots
not distinguished by other invariants such as the Alexander polynomial.

We define the tensor product of a p X ¢ matrix A and a r X s matrix B by

anB algB aqu
ang GQQB aqu
AgB=| . . . (17)

aplB Clpr aqu

A ® B is clearly a pr x gs matrix. We also define the trace of a n x n matrix
C by

tT(C) = ZCM‘ (18)

)= (o) (19

Consider the matrix
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and define
—_——
n times

then p®" is a 2" x 2™ matrix and tr (u®") = (1 + ¢)". Furthermore let

1 0 0 0 1 0 0 0
0 0 —tY20 = 01—t —t71/29

R= 0—t/21-¢t0]’ R = 0—t12 0 0 (21)
0 0 0 1 0 0 0 1

where we use the convention that (t1/2)2 =t.

After all these definitions, we are ready to define a map from the braid
group B, to the 2" x 2" matrices with Laurent polynomial entries (&, :
B, — M (2", Z [t'/2,t71/2])) given by

D, (0f)=LRL® - LAR @ LRL®- I (22)
— —
¢ — 1 times n —1— 1 times

where € = +1 and I is the 2 x 2 identity matrix. For some general braid
word (3 we have
B=oiloZ--ofr (L <iyig,--,in <n; g =%1)  (23)
Pu(B) = P (07)) P (037) -+~ P (07) (24)
If we now define
€B)=e1+ex+-+ek (25)
then the Jones polynomial is given by

e(B)—n+1
2

t tr (Pn(B)p®")

1+t

Vlt) = (26)

and we have that if 81 ~ (2, then Vﬁ—l(t) = Vﬁ_z(t) for any two braids 81 and

B2 (not necessarily members of the same braid group).

Exercise 2.13. Compute the Jones polynomial for the 2-braid oy, the clo-
sure of which is clearly the unknot (solution follows).

We just compute and obtain

o 1 0 0 0\ /1000
t 2 i 0 0 —vto|[otooO
14+t 0—vt1—¢t0)|00¢t?20

00 o0 1/ \ooo¢#

Vor(t) = =1 (27)

It is a well-known conjecture that the Jones polynomial recognizes the un-
knot, that is to say that the Jones polynomial is equal to 1 if and only if
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the knot is isotopic to the unknot. Many people have been searching for a
proof and a counterexample and none has been found thus far. Resolving this
question is one of the more important open problems in knot theory.

Proving that the Jones polynomials is an invariant of closures of braids is
easy. For reasons of space, we simply outline the equations that need to be
checked by straightforward calculations.

Theorem 2.14. The Jones polynomial is a knot invariant.

Proof. By direct calculation, check

1. The mapping &,, is a homomorphism from B,, to M (2", Z [tl/z, t’l/QD.
This can be done by checking that

Py, (0i05) = Pn (0j03);  Pn(0i0i410i) = Py (0i410:0i41) (Ji=jl > 1)
(28)
2. By Markov’s theorem, two closed braids are isotopic if and only if they
can be reached from each other by conjugacy and stabilization. Thus we
need to check if the Jones polynomial is invariant under these two moves,

Vig(t) =V5t);  V5(t)=V5,2(t)  (v,B€Bn) (29)

The polynomial invariants can be calculated using so-called skein rela-
tions. These relations are expressions relating the polynomials of knots that
are identical except for a single local change. In braid language, the Alexander
polynomial of the closed braid 8 € B,,, Ag(z) is given by the relation

Apo(2) = Agy1(2) = 2Ap(2) (30)

together with the boundary condition that if the closure of § is the unknot,
A(z) = 1. The Jones polynomial Jg(z) has the same boundary condition but
takes the skein relation

Jo; (2) _ . i 2
2ol g, = (V- 35) st (31)

Using these skein relations, it is possible to calculate the polynomial invari-
ants straight from the diagram by successively eliminating crossings [48].

2.7 Properties of the Braid Group

In this section we will prove various propositions which enumerate the basic
properties of braids. The Artin presentation will be used for all these as for
most of the rest of the chapter.

Recall that the center of a group is the set of all those elements which
commute with all other elements in that group. The centre of the braid groups
will become important in many places and so we will construct it.
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Definition 2.15 (fundamental word). The fundamental braid word A,, €
B, is defined by

A, = 0109+ 0,_10109++Op_9-* 010201 (32)
It is a simple matter of applying the braid group relations to find that
A2 = (01000 1)" (33)
Proposition 2.16. The center C(B,,) of the braid group By, is the set
O(B,) = {A%) (34)
for any (positive, negative or zero) integer i.
Definition 2.17. The ascending braid word a; is defined by a; = o102+ 0.
Proposition 2.18. In B,,, we have 0;a; = ajo;—1 for 1 <i<j <n.
Proposition 2.19. For all i we have 0;4A,, =~ A,0p_;.

Definition 2.20. Two positive n-braid words a and b are called positively
equal if and only if there exists a sequence of words W; with 0 < i < p for
some finite p for which Wy = a, W, = b, W; is obtained from W;_1 by a single
application of one of the defining relations of By, and all W; are positive.

In other words, two braids are positively equal if we can transform one
into the other without ever having to use an inverse generator.

Proposition 2.21. Two equal positive braid words are positively equal.

2.8 Algorithmic Problems in the Braid Groups

We have defined braids, elucidated their connection with knots and found
a group structure on braids. This group structure has certain properties of
which we enumerated a few important ones in the last section. There are
a number of questions which we may readily ask about braids, the most
significant of which we shall describe in this section. Clearly, we wish to
know both necessary and sufficient conditions for equivalence.

Definition 2.22 (word problem). Given two braid words o, 3 € By, the
word problem asks whether a ~ (3.

The question of whether a ~ (3 is identical to the question of whether
afB~! ~ e, the identity in B,,. Thus the word problem reduces to recognizing
the identity element.

Recall that two elements a and b of some group G are called conjugate,
denoted a =, b, if and only if there exists a ¢ € G such that a =~ cbc™!.
The conjugacy condition becomes oy = (3 for two braid words o, 3 € B,
to be conjugate with respect to a third braid word v € B,,. We are naturally
interested under what conditions such a commutation relation exists.
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Definition 2.23 (conjugacy problem). Given two braid words «, 3 € By,
the conjugacy problem asks whether there exists a third braid word v € B,
such that ary = vf.

Suppose a = (3, then we also have ary = v for v & e. Thus any equal braid
words are also conjugate but two conjugate braid words are not necessarily
equal and so the conjugacy problem subsumes the word problem.

The most central question in knot theory is that of classification: Given
two knots K, Ky are they topologically equivalent K7 ~ K57 Markov has
found it possible to translate this question into a question about braids.
Imagine closing the braid cbc™!. We may move the subbraid ¢ through the
closure part so that it emerges on top of the rest of the braid, i.e. becomes
bc'c = b. In other words, conjugation of a braid preserves closed braid
isotopy: Any two conjugate braids represent equivalent knots. Conjugation
is a sufficient condition but unfortunately not necessary. The braid e € By
is just a single vertical line segment which closes to the unknot. The braid
01 € Bs is the braid of single positive crossings which also closes to the
unknot. As the braids are in different braid groups, they have a different
number of strings and are thus not conjugate to each other. Such braids can
be related through a move called stabilization.

Definition 2.24 (stabilization move). Given a braid o € B,, the op-
eration o < aafl is called stabilizing the braid and is referred to as the

stabilization move.

Note that stabilization changes the number of strings in the braid by one
and that we refer to both the addition and removal of a string as stabilizing.
Starting with e € B;, we stabilize once to obtain o1 € Bs. In this way, we can
move between two braids in different braid groups. Markov’s theorem states
that conjugacy and stabilization are enough for knot equivalence.

Theorem 2.25 (Markov [55], Birman [14]). Given two braids o € B,
and B € B,,, we have & = 3 if and only if B may be obtained from « by a
finite sequence of conjugacy or stabilization moves; we denote this by o ~p; 3

and call a and 8 Markov equivalent.

In [55], Markov stated this theorem but the first complete published proof
appeared in [14]. We shall not prove this theorem here as it is difficult and
lengthy and would distract from the flow of the chapter. It is clear that we
are interested in approaching knot classification from a braid theory point of
view.

Definition 2.26 (Markov problem). Given two braid words o € B,, and
0 € By, the Markov problem or algebraic link problem asks whether a =y

8.
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By Markov’s theorem, a solution to the Markov problem would provide
a solution to the knot classification problem. As the Markov problem sub-
sumes the conjugacy problem, we are presented with a hierarchy of three
combinatorial problems in group theory which would have significant weight
if a solution were found. Solutions exist to the word and conjugacy problems
and we shall develop new solutions in later sections. A solution to the Markov
problem only exists in the sense that there exists a knot classification scheme
based on 3-manifold classification. This is an indirect and unusable solution
as it is exponential in the amount of computing time required as a function
of the crossing number of the knots concerned.

As many braid words represent the same braid, we are naturally lead
to ask for a particularly simple representative. A very natural definition of
“simple” in the case of a braid word is the least length possible; the shorter
the word, the simpler it is. As length has an obvious minimum, we formulate
the minimal word problem.

Definition 2.27 (minimal word problem). Given a braid word a € By,
the minimal word problem asks one to find a braid word o, € B, such that
am = a and L(ay,) < L) for any braid word o/ =~ «. The word oy, is
the minimal word as it is, by definition, the shortest word in its equivalence
class.

The word problem is frequently solved by devising an algorithm which
finds a unique representative for the equivalence class of the element under
consideration. In many groups, this so called normal form is also of mini-
mum length in the equivalence class so that word problem and minimal word
problem are solved together. Examples of such groups include free groups,
HNN-extensions and free products. For the braid groups, we shall find that
the minimum word problem is far more complicated to solve than the word
problem. In fact, under some very reasonable assumptions, the minimum
word problem in the braid groups can only be solved by what amounts to
a global search of the equivalence class. We shall outline these assumptions
and the methods by which the global search may be done in later sections.

3 Braids and Knots

3.1 Notation for knots

Dowker-Thistlethwaite Code When he originally invented knot theory,
Tait sought to construct a table of distinct prime knots. Two tasks had to be
undertaken: (1) An exhaustive list of all possible knots had to be constructed
and (2) all duplicates had to be struck from that list. Tait used mainly com-
binatorial methods to construct an exhaustive list and then tried to eliminate
duplicates by trying to deform knots into each other. Tait labelled each cross-
ing by a letter of the alphabet. He named a knot by starting at some random
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Start

Fig. 14. The procedure for obtaining the Dowker-Thistlethwaite code for the trefoil.

point and going along it in the direction of its orientation, writing down the
label of the crossings as he passed them. This string of letters is called the
Tait code of a knot. Clearly a knot with n crossings has a name consisting of
2n letters. There exist a finite, though large, number of possible such names
for any n. Not all possible names can arise from naming a knot, however and
Tait was able to find methods to determine if a specific name was valid.
Dowker and Thistlethwaite improved Tait’s methods and introduced their
own naming convention [35]. Consider a knot of n crossings and start at a
random point going along the knot in the order of its orientation. Name
the crossings in numerical order as you pass them giving each crossing two
numerical labels (you will pass each crossing twice before returning to the
staring point). Each crossing will have two numbers associated with it, i and
J, say. We can construct an involution a from these by putting a(i) = j and
a(j) = i. Thus we have a(a(k)) = k for any label k. Note that a reverses
parity, that is if ¢ is odd and a(i) = j, then j is even and vice-versa. We

agree to write a; for a(i), S for the sequence a1, asz,- -+ ,az, and S,qq for the
sequence ai, as, -+ ,d2,—1. Lhe sequence S,qq completely determines both S
and a [35].

There are 2n different possible starting points on the knot and if it has
no orientation, there are two possible orientations. Not all sequences S,qq are
identical. The standard sequence Sstq for a knot will be the lexicographical
minimum over all possible S,44. Consider, for example, the trefoil knot in
figure 14. The starting point is labelled in the figure and we proceed to name
the three crossings twice each in the order in which we encounter them. This
gives rise to the involution

a1 =4, a0=5a3=6,a4=1,a5=2, a6=3 (35)

which results in Sgq = 4, 6, 2.

Dowker and Thistlethwaite were able to determine both necessary and
sufficient conditions for a sequence of number to be realizable as a knot. This
algorithm is relatively simple and quick to implement and has been used
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by them to tabulate knots. This code is very compact and easy to obtain
from a knot, but their tabulation methods focus on enumerating all possible
sequences and so we ask: How may we recover the knot given the code?

We note first of all that a knot of n crossings will get 2n labels (2n being
necessarily even). Suppose Sgtq = b1, b2, -+ , b, and the original involution is
a. As Ssiq is a standard sequence, we have that ao;_1 = b; for i ranging from
one to n. Because of the definition of a, we then have

a(a(2i — 1)) =a(b;)) =2i—1 (36)

Since a reverses parity and we list only the a; for i odd in the standard
sequence, all these a; are even. Thus we have recovered the entire involution
a. The crossings of the knot thus get the double names i and b; for ¢ ranging
from one to n. Having gotten the complete labelling information, we can
draw the crossings on our paper as double points and connect them in order
of the labelling and thus retrieve the knot. We may not get the same number
of crossings that we had in the original projection but this does not matter
topologically.

~ 00X

oo 1

Fig. 15. The four elementary tangles.

Conway’s Basic Polyhedra We constructed the Alexander polynomial in
section 2.5. Starting from a knot, we must first construct a closed braid iso-
topic to the knot, then write down its Bureau representation and take its
determinant to obtain the Alexander polynomial. In practise this process,
particularly constructing a closed braid representative, is very complicated
and time-consuming. When Conway looked for a mechanizable method, he
was lead to construct a new notation for knots. From this notation, he was
able to extract the Alexander polynomial so straightforwardly that he pro-
ceeded to calculate them all by hand rather than mechanize the method.

A knot diagram has crossings and arcs connecting the crossings. If we
were to draw small circles around the crossings and then ignore what is in the
circles, we would have a template for the knot. Into the circles we could insert
any of the four elementary tangles of figure 15 to generate several knots, one
of which would be the original knot. The numerical names of the elementary
tangles arise from their classification which will not concern us here. Conway’s
notation derived from the observation that many knot diagrams are the same
after the crossings have been so removed. In such a way, we may generate
a large number of different knots starting from one such knot template and
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Fig. 16. The universal polyhedron.

inserting different tangles into different slots. Conway called these templates
basic polyhedra and was able to show that eight basic polyhedra are enough
to generate all the different knots up to and including 11 crossings [30].

The number of different basic polyhedra needed to generate the knots of
higher crossing number n increases sharply with n and as the polyhedra lack
pattern, the next one may not easily be generated from the previous ones.
This problem gave rise to the idea of the universal polyhedron to be discussed
next.

The Universal Polyhedron The universal polyhedron P(i,7) is defined by
figure 16. It has 7 rows and j columns of vertices which will be filled with
elementary tangles and which are connected by edges. It can be shown that
any knot can be represented by some P(i, j) and that we may write this down
in a matrix form,

P11 P12 - P1j

. P21 P22 - P2j
P(i,j) = L ) (37)

Di1 Pi2 - Dij

with the elements py; € {1,—1,0,00}. For example, the knots up to and
including six crossings (see figure 8) are given by

—-1-1
n=(0s)

111
41—<0_1OO) 5,=(11111)

oo 0 1 oo 0 —1 -1
525111 6= 1 1 0 (38)

01

|
B

0 1 o 0 —1-1o00
11 1 o 111
0-1—-1o0 ]| 63=10-1
01 o0 O 11 0

62 =
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Theorem 3.1. Every reqular projection of any knot may be represented by
the universal polyhedron P(i,j) for some i and j all the vertices of which
contain elementary tangles.

Proof. A regular projection of a knot is characterized by a finite number n
of double points and 2n arcs which connect the double points in a specific
manner. For sufficiently large ¢ and j, the polyhedron P(i,j) can accommo-
date all double points in the form of +1 tangles and can achieve the desired
connection of these by placement of 0 and oo tangles into it. This is obvious
because the 0 and oo tangles represent horizontal and vertical connectors in
the polyhedron. Because this connection may be achieved without +1 tan-
gles, it is clear that no further components, with the possible exception of
unknots, are created. Thus what remains to be shown is that no unwanted
unknots will be created.

There are 75 vertices and 2ij edges connecting them in the empty polyhe-
dron P(i, 7). Eliminating one vertex by a 0 or co tangle, eliminates two edges.
Apart from the +1 tangles of which there are n, the final polyhedron will con-
tain ij —n tangles of type 0 and oo which will have eliminated 2(ij —n) edges
from the original polyhedron, leaving exactly 2n edges which are needed to
connect the double points. Thus there is no extra edge left over which could
possibly form an extra component. Therefore any knot may be represented
using the basic polyhedron P(i,j) and elementary tangles.

3.2 Braids to Knots

Suppose we have a braid b given by a braid word and we want to denote
the knot that is isotopic to its closure in the standard notations. The univer-
sal polyhedron (figure 16) turned through = radians becomes a closed braid
template if every vertex is filled with tangles of the types 1, -1 and 0.

The n-braid b will be specified by a function b(t) = ;' which gives the
t*h Artin generator of b for 1 < t < ¢ where ¢ is the number of crossings in the
braid. The map &; will map an Artin generator afl to the elementary tangles
1 and -1 if the exponent of the Artin generator is 1 and -1 respectively and
1 = j and will map any Artin generator to the elementary tangle 0 otherwise,

&G(o7!)=-1 (40)
& (07") =0fori+j (41)

The closed braid b can be contained in the polyhedron P(n — 1,¢) with
pij =& (b(j)) withl1 <i<nand1<j<ec.
For example, b = o3. Then b(i) = o1 for i = 1,2,3 and we get
o} =(111) (42)

which correctly represents the trefoil knot. In the next section we will gener-
alise this example to an infinite family of knots known as torus knots.
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3.3 Example: The Torus Knots

The torus knots are an infinity family of prime knots which have particularly
simple properties and are frequently used as examples in knot theory texts.
The connection between braids and knots is readily illustrated in the case of
torus knots and this is what we shall do below.

Definition 3.2. Given two co-prime (no common factors apart from unity)
integers p and g, the torus knot T}, , is constructed by wrapping a closed curve
around the surface of a torus such that it encircles it p times meridionally
and q times longitudinally (respectively the short and the long way around).

Torus knots are completely characterized by the two integers p and gq.
They are invertible (isotopic under switching the orientation) and chiral (not
isotopic to their mirror image) [?]. The fundamental group of their com-
plements is given by m1 (T}, 4) = ({a,b} : a? = b9) [49] from which we may
recognize the requirement that p and ¢ be co-prime. It may be shown that
Tp,q = Tq,p- The torus knots are among the few knots for which the minimal
number of crossing-switches required to transform the knot into the unknot,
i.e. the unknotting number, is known; it is (p — 1)(¢ — 1)/2 [1]. They are also
among the few knots for which the minimal number of crossings in any pro-
jection, i.e. the minimal crossing number is known; it is min[p(¢—1), ¢(p—1)]
[75].

The simplest example of a torus knot is the trefoil. It is not the unknot
even though 7}, 1 for any p would be isotopic to the unknot but p and unity
are not coprime. The trefoil knot is T3 o and the knot 51 is 75 5. In general,
the closed p-braid (op_10p_2---01)? is isotopic to the torus knot 7T}, ;. This
is easily seen by picturing T, , on an actual torus. We cut the torus across
a random meridian (the short way around) and straighten it into a cylinder.
The remainder will be the braid above. Moreover, there exists no closed braid
representative of T}, , with less than p strings so that p is the braid index of
Tpq-

Exercise 3.3. Show that the Alexander polynomial of T}, 4 is given by

(1 —tP?)(1 —1t)
A E A S— 43
e = (1= tp)(1—t9) (43)
As we have seen, any torus knot can be represented as the p-braid b =
(Op_10p_2--- o1)?. By using the method of the last section, we can represent
T, ¢ in the polyhedron P(p — 1, ¢(p — 1)).
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The Dowker code may be obtained from a knot represented in our nota-
tion by simply walking through the polyhedron and labelling the crossings.
As the polyhedron is structured, this walk is perfectly definite and can be
programmed easily on a computer.

3.4 Knots to Braids I: The Vogel Method

Rl

Fig. 17. Both types of crossing have to be reconnected in the shown way in order
to obtain a diagram of Seifert circles from a knot diagram.

A braid is more structured than a knot and so the transition from knot
to closed braid is harder to effect than the reverse. There exists a simple
method due to Vogel [72] which we shall present without proof in this section.
Suppose we are faced with a knot diagram D which we want to convert
into a closed braid. For this method, we shall have to view D in a variety
of ways. From the diagram, we can get to the projection P of the knot
onto the plane by viewing each crossing as a double point and thus ignoring
over and undercrossing information. From D, we can construct a diagram
S by reconnecting each crossing in D in the manner shown in diagram 17.
The diagram S will contain a number of unknots which we will call Seifert
circles. Using these constructions, we can define the crucial concept in Vogel’s
method.

Definition 3.4 (admissible triple). Let f be a face of P and a and b be
two edges of P. The triple (f,a,b) is called an admissible triple if and only
if it satisfies: (i) a and b are contained in different Seifert circles and (ii) a
and b have the same orientation with respect to any orientation of df, the
boundary of f.

It is shown in [72] that the following algorithm will transform any knot
diagram D into a diagram of a closed braid.

Algorithm 3.5 Input: A knot diagram D. Output: A knot diagram D' am-

bient isotopic to D and in the form of a closed braid.

1. Determine if D has an admissible triple. If yes, continue. If no, D is in
the form of a closed braid and the algorithm is done.
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Fig. 18. The two types of admissible triples are shown in the solid curves and the
form into which they should be transformed is shown in the dashed curves.

2. Admissible triples can come in the two flavours shown in the solid curves
in figure 18. Each admissible triple detected, is to be transformed (via a
Reidemeister move type 1) from the solid curve to the dashed curve in
figure 18. Such a transformation will be called an elementary transfor-
mation. Then go back to step 1 of the algorithm.

It can be shown that algorithm 3.5 always terminates after at most
(s — 1)(s — 2)/2 elementary transformations where s is the number of
Seifert circles in S. The braid which this algorithm generates has at most
n+ (s — 1)(s — 2) crossings where n is the number of crossings in D as the
elementary transformation adds two crossings each time it is applied. It is un-
clear whether algorithm 3.5 is confluent, that is whether the order in which
we perform elementary transformations should two (possibly overlapping)
triples be simultaneously admissible changes the final outcome.

3.5 Knots to Braids II: An Axis for the Universal Polyhedron

Having constructed a new notation for knots, we wish to solve the problem
of how to extract a closed braid from the matrix which is isotopic to the knot
described by the matrix. A few algorithms have been constructed in the past,
which convert a knot into a closed braid but they are difficult to implement
because they depend upon topological deformation of the knot projection
[51] [15]. The best known algorithms have been implemented [72] [77] and
have complexity O(n?). We shall present an algorithm which achieves the
conversion with complexity O(n), increases the number of crossings only in a
few cases (and then only by a few crossings) and uses a linearly bounded
number of strings. There exists no algorithm to calculate the number of
strings which are at least necessary to describe a specific knot — the braid
index of the knot. Because of this, it is not possible to say how close to the



Braids and Knots 33

minimum the number of strings used by our algorithm is. The number of
crossings is sometimes increased because it has been found that there are
knots for which any closed braid representative has more crossings than the
minimal knot diagram; the knot 5.1 in the standard tables is the simplest
example of this [66]. Our algorithm is valid both for oriented and unoriented
knots.

An Example Alexander’s theorem was proven by showing that every knot
can be deformed into a form where the knot loops around an axis a finite
number of times without local maxima or minima with respect to that axis.
If we cut the string along the axis in one place, we obtain a braid. The gluing
back of the cut constitutes the canonical closure. Thus as far as the canonical
closure is concerned, the finding of an appropriate axis is the key. Having
obtained a canonically closed braid which is equivalent to a knot, we may
obtain a plait from it by considering the closure curves part of the braid
diagram and moving them into the middle of the braid diagram. The next
section gives an example of this.

SN

Fig. 19. The trefoil knot with an axis for braiding it.

For the rest of this section, we are going to work through an example
of our method. Consider the trefoil knot in figure 19. We have drawn an
axis through it by the following method: (1) We drew a line through the
projection of the trefoil which intersects every region of the plane at least
once, (2) begins and ends in the infinite region and then (3) assigned the
under and overpasses of the knot under and over the axis by traversing the
knot from a random starting point (point A in the figure) while (4) assigning
the passes alternately as we met the crossings of axis and knot. Next we
perform a coordinate transformation from the knot reference frame (figure
19) to the axis reference frame in figure 20 by pulling the axis straight.
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A/’
~
A

Fig. 20. The trefoil knot as it appears after the axis has been straightened from
figure 19. For reference the point A has been labeled here again.

We can easily observe from figure 20 that the axis is valid; i.e. if we traverse
the knot starting at A we will travel around the axis without local maxima
or minima permanently in a clockwise direction. If we now cut the knot at
those points at which it overcrosses the axis and lay out the ends carefully
to either side, we shall obtain the braid o; ‘o5 oy o5 " shown in figure 21
(a). To get back to the trefoil from this, we perform the canonical closure
which is identical to sealing the cuts made above. This is shown in figure 21
(b). This knot has four crossings and is ambient isotopic to the trefoil thus
there is some inefficiency in our braid representation (note however that there
exist knots for which the most efficient braid representation contains more
crossings than their most efficient knot projection [66]). We note that we may
lift the arc labeled in figure 21 (b) to remove one crossing. This move also
removes a string and so we obtain the braid of figure 21 (c). This braid has
two strings and three crossings, it is thus the most efficient representation of
the trefoil as the trefoil must have at least this many strings and crossings.
We conclude that the closure of the braid o;'o; oy ! is ambient isotopic
to the trefoil knot. Note that we may turn the entire figure 21 (c) about
a vertical axis through its center and thus obtain the result that the braid
0101071 is ambient isotopic to the trefoil also; this, finally, is the well-known
braid representation of the trefoil knot. This is the prototype for a general
method which we shall develop below.

Platting a Knot The diagram of a knot which is expressed as a closed braid
may be naturally divided into two parts: the braid and the closure. The most
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Fig. 21. The braid which is extracted from figure 20 by cutting the trefoil knot at
its overcrossings over the axis and laying out the ends is displayed in part (a). The
closure of this braid is part (b). If we lift the arc labeled in part (b) we obtain the
braid in part (c). See discussion in the text.

>

important feature of the braid part, for our purpose, is the requirement that
all strings be monotonic increasing in the vertical coordinate, that is they
may only go side to side and never double back on themselves. In this light,
consider turning the polyhedron P(i,j) clockwise by m/2. If the polyhedron
does not contain any oo tangles, this is already a canonically closed braid.
However, in general, the polyhedron will contain oo tangles. Note that the
rotation will make the oo tangles look like 0 tangles. In an effort to rid
ourselves of the oo tangles, we take the top string in the oo tangle and move
it all the way to the bottom of the knot diagram and move the bottom string
all the way to the top. In this way, we have created two extra strings in the
braid which are closed in the plait manner. If we do this for all co tangles, we
will have a valid braid in the center of the diagram but the closure mechanism
will be a hybrid between the canonical and plait methods. In order to rectify
the situation, we move the strings which are closed in a canonical manner
into the center of the braid diagram, thereby creating more strings and more
crossings. Once this has been done, we have a fully valid braid closed in the
plait manner which is ambient isotopic to the knot we started with. Figure
22 shows the process of converting the unknot

U—<;f1> (45)

into the braid 0204_1030405_ 106_ 104_105_ 10406 closed in the plait manner. This
procedure is valid generally and clearly represents a readily implementable
algorithm for transforming a knot given in our notation into a plait. If the
original knot is given in the polyhedron P(i, j) and has k tangles of type oo,
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Fig. 22. The conversion of a knot into a plait.

then the number of strings required in the plait is 2(i 4+ k+1) but the number
of crossings depends upon the exact configuration.

Laying the Axis As mentioned before, the transformation of a knot pro-
jection into a canonically closed braid centers around finding an appropriate
axis for the string to wind around. This was the central point of Alexan-
der’s theorem which proves that such an axis may always be found. A ready
method for finding an axis is given in the following algorithm.

Algorithm 3.6 Input: A knot projection. Output: A knot projection with an
axis around which the knot winds without local maxima or minima.

1. Begin with enumerating the regions into which the knot projection divides
the plane, suppose there are R of these.

2. Choose two arbitrary points in the infinite region and call them A and
B.

3. Draw a line L connecting A and B in such a way that the line intersects
every region at least once.
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4. Choose a random point on each of the knot’s components and traverse the
knot in the direction of the orientation once for each component starting
at the chosen point. While traversing label each intersection of L with
the knot alternatingly with a + or — sign starting with +.

5. Interpret each + crossing as an overcrossing of L over the knot and each
— crossing as an undercrossing of L under the knot. The line L oriented
from A to B is then a valid axis.

Fig. 23. The axis of the braid through the polyhedron P(3,j).

This algorithm may clearly be applied to our polyhedron P(i, j). However
we have the problem of the regions which depends upon the exact configura-
tion of the knot. This can be solved by forcing the line L to intersect every
region in the polyhedron and therefore intersecting some regions of the knot
more than once. This is unfortunate but unavoidable if we are seeking a gen-
eral solution of the problem. The manner in which this may be done most
economically is illustrated in figure 23. The line L is the dotted line beginning
at point A and finishing at point B. If the polyhedron has an odd number
of columns (as the one in figure 23), then the line L is best described by
the dotted line in figure 23. If however, the polyhedron has an even number
of columns, then the line L is best described by the dotted line in figure 23
from point A to point C' and then the dashed line from point C' to point B.
If algorithm 3.6 is correct then a line drawn in a general polyhedron P(i,5)
according to this example is a valid braiding axis.

We may find an axis which passes through every region exactly once, if
possible, by the following algorithm.

Algorithm 3.7 Input: A matriz describing a knot in our notation. QOut-
put: A matriz describing the regions of the knot. Fach element of the matrix
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receives a label from 1 to R, the number of regions. This gives complete in-
formation about which regions of the polyhedron are connected and how many
there are.

1.

©w

Begin at the top left of vertex (1,1) and follow the boundary downwards,
as for counting regions, the orientation of the knot does not matter. Mark
the region (0, 1) with a 1, the current marker, in the region matrix.

In following the boundary, one will come to vertex (1,1); we assess its
value and continue. If we stay in the same region of the polyhedron we
continue, if we enter a new region of the polyhedron, then this new region
of the polyhedron belongs to the same region of the knot as the previous
one and thus we mark it with the current marker in the region matrix.
The whole issue at hand is that the regions of the polyhedron are known
while we wish to gain knowledge of the regions of the knot.

We continue to follow the boundary until we reach the point of origin.
We search the matrix for an unmarked region. If there exist unmarked
regions, we increment our current marker and choose one of the regions
as our new starting region and choose a point upon its boundary as our
new starting point. Then, we repeat the algorithm from step 1, marking
the region with the current marker.

Once no unmarked region of the polyhedron exists, the algorithm is fin-
ished. The largest marker used in the matrix which we have obtained
is clearly the number of regions of the knot. Furthermore, since all con-
nected regions are labeled with the same marker, we have a complete
knowledge of which regions of the polyhedron belong to the same region
of the knot.

Algorithm 3.8 Input: A knot projection given in our notation. Output: An
axis which passes through every region exactly once, if this is possible. If not
the output is an axis which passes through each region at least once.

1.
2.

Get the region information as prescribed in algorithm 3.7.

Construct a graph in which each region is symbolized by a node and two
nodes are connected by an unweighed edge if they are adjacent in the
plane.

. A Hamiltonian circuit is then a path which passes through each region,

that is node, exactly once starting in the infinite region and returning
there. If a Hamiltonian circuit exists, so does an optimal axis. If no Hamil-
tonian circuit exists, we find an axis using algorithm 3.6 which gives an
axis which passes through every region at least once.

The advantage is that we will generate a braid with less strings but the

Hamiltonian circuit problem is NP-complete and so the execution of algo-
rithm 3.8 is exponential (unless we use an approximation algorithm or it is
shown that P = NP). This fact lends further weight towards the usefulness
of algorithm 3.6. The primary usefulness of this algorithm originates in the
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fact that the laying of the axis does not depend upon the exact knot configu-
ration, only the labelling does. Before we continue, we prove that algorithm
3.6 always yields a valid axis, this essentially amounts to proving Alexander’s
theorem.

Theorem 3.9. Given any knot projection, algorithm 3.6 will find an axis
about which the knot is without local mazima or minima.

Proof. Alexander’s theorem [4] states given a knot projection, it is possible
to deform it with respect to a point P in the projection plane that after
the deformation a point A which travels along the knot in the direction of
its orientation will travel around the axis defined by P (the axis is a line
perpendicular to the projection plane intersecting it at P) in a constant
fashion, either clockwise or counterclockwise, for the entire circumnavigation
of the knot. We wish to do the opposite, namely to deform the axis around
the knot projection to achieve the same ends. We can imagine the process of
laying the axis as akin to sewing in which we move the needle up from and
down onto the plane. Morton [59] has constructed a similar method to ours
which he calls “threading.”

The knot divides the plane into several regions. If the axis does not in-
tersect a particular region, the point A will change course during traversing
the knot and so the axis must intersect each region. It is however clearly only
necessary for the axis to intersect the region once. Choose a line in the plane
which intersects the axis. With respect to this line we can define an angular
coordinate 6 going around the axis. As point A must travel around the axis
in a constant fashion it must, after it passes 8 = 0, reach 8 = 7 before it once
again reaches § = 0. This shows that the axis, in the projection plane, must
over and undercross the knot alternately with respect to A. This fulfills the
requirements of an axis and these are assured by algorithm 3.6 and thus the
theorem is proven. O

Getting the Braid Having obtained the axis, we must now simply put
together all the pieces and construct the braid. This will be done via the
following algorithm.

Algorithm 3.10 Input: An axis L in a knot projection given in P(i,j) us-
ing our notation. Output: A braid the canonical closure of which is ambient
isotopic to the given knot.

1. Consider an empty polyhedron P(i,j) and label each edge by the row
and column index of the vertex out of which it is emerging on the right
side giving it the further label a if it is the top edge and b if it is the
bottom edge. That is the top right hand edge coming out of the vertex
(1,1) would be (1,1),.

2. All edges which intersect the axis L at a positive crossing are to be
numbered in order starting at point A; suppose there are k of these.
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3. Starting at the numbered edges, use the traversal algorithm to follow
each edge around the knot until another positive crossing with the axis
L. All edges encountered are to be labelled with the same number as the
original edge.

4. When all edges are numbered, we have identified the individual strings
of the braid and numbered them in order. Assign a distance value of 1 to
each edge in the polyhedron.

5. Traverse the knot again as in step 3 but this time stopping at each double
point and extracting which labelled string passes over which other labelled
string and at which distance value this occurs.

6. When the whole has been traversed, we have a list of crossings specifying
which strings are involved, which string crosses over the other and at
what distance from the bottom of the braid the crossing occurs. This
information may be used readily to construct a colored braid, which may
be converted easily into an Artin braid word.

7. We assess the string labels around the knot and calculate the permutation
associated with the braid which winds around our axis. If this permuta-
tion is different from the permutation of the braid which we obtained in
step 6, the residual permutation must be added to this braid in the form
of extra crossings.

The number of crossings is increased in some circumstances by a small
amount in step 7 of the algorithm. It is a fact that there exist knots of minimal
crossing number n which have closed braid representatives all of which have
crossing numbers greater than n [66]. Hence, step 7 is not a deficiency of the
algorithm 3.10 but a fundamental necessity.

It is clear from Alexander’s theorem[4] that this algorithm works. The
number of strings used is the number of positive crossings of the axis with
the knot which is equal to half the number of crossings. The number of
crossings of the axis with the knot is

{ 4i+ (20 +2) [J—J j odd

2 4
21+ 2@—|—2 ( )—|—2jeven (46)

where |z] is the greatest integer less than . An analysis of the possibilities
in oddness and evenness of i and j reveals that N, is always even which is
good since we must have an equal number of positive and negative crossings.

Algorithm 3.10 therefore finds a braid with a number of strings which
scales linearly in the number of rows and columns necessary to represent
the knot. It is conceivable that a more economical way of laying an axis
may be found using algorithm 3.8 but this has an exponential complexity.
The number of strings may be reduced after the braid has been found using
Markov’s theorem.

The determination of the regions, the laying of the axis, the labelling of
the axis crossings, the labelling of the edges and the extraction of the double
point information all take a time proportional to the number of vertices in the



Braids and Knots 41

polyhedron ij. The building of the braid from the crossing information takes
time proportional to 7j. Therefore the entire algorithm to proceed from a knot
projection to a canonically closed braid has complexity O(ij). This algorithm
succeeds in being readily implementable and in constructing a braid which is
reasonably small.

3.6 Peripheral Group Systems of Closed Braids

In this section we will investigate the peripheral group system of the closure of
the fundamental braids. The peripheral group system is a complete invariant
of knots and figures largely in knot theory. The fundamental braid words are
very important in braid theory and we choose them for this investigation for
that reason and that the closure of As is the Hopf Link and the closures of the
other fundamental braids look very similar to Hopf Links. In fact so similar
that we can regard the class of knots defined by the closure of fundamental
braids as a generalization of the Hopf Link. Another generalization of the
Hopf link has been investigated in the literature [28]. We shall see that our
methods developed here can be extended beyond fundamental braid words
to all braid words.

The Fundamental Group Consider a space X and a point zg € X which
we shall call the base point. In the space X, we may construct loops, i.e. paths
from z¢ to itself.

Definition 3.11 (fundamental group). The group that consists of the
loops at xq in the space X with respect to the homotopy equivalence relation
(continuous maps from one set of loops to another) is called the fundamental
group of the space X and is denoted by m (X, o).

It can be shown that if X is path connected, the choice of base point does
not matter. All spaces we are about to consider are path connected and so
we shall drop the specification of the base point and denote a fundamental
group by 71 (X).

Definition 3.12 (knot complement). The complement of a knot K with
respect to a space X is the space X — V(K) where V(K represents a tubular
neighborhood of the knot K.

Definition 3.13 (knot group). The group of a knot K, denoted by w(K)
is the fundamental group of the complement of the knot with respect to the
space X = R3 (sometimes X is taken as S but it can be shown that the two
fundamental groups arising from X = R? and X = S® are isomorphic).

Consider a knot K and its complement R3 — V(K). In this space, choose
a point zo as the base point (the choice is arbitrary as the space is path
connected). Consider the projecting cylinder Z € R3 which contains all of
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Fig. 24. The labelling of the trefoil knot in order to yield a presentation for the
fundamental group of its complement.

V(K) and is constructed such that the projection of K onto the plane z =0
in R? contains at most double points. This projecting cylinder will contain n
self-intersections if K has n crossings. Label these self-intersections by a; and
the sections of Z between the a; by s;. Z is to be oriented in order to match
the orientation of K. Denote a loop from the base point to itself which goes
exactly once around s; and no other s; by p;. From this construction, it is
clear that all loops (with respect to homotopy equivalence) can be constructed
as products of the loops p;. This can easily be seen by the fact that any path
in the complement can be continuously deformed into a product of loops p;.
Thus 7(K) is generated by the loops p;. For an example see figure 24.

Having gotten the generators, we need the relations to obtain a group
presentation. Consider the loops encircling the a; and join them to the base
point by a path ¢;, then it is clear that c;a;c; 1is contractible (homotopic to
the trivial loop). The word in the group corresponding to this loop is then
a relation in the group. The presentation so obtained is called the Wirtinger
presentation of the knot group. This discussion proves that the following
algorithm to obtain it is correct.

(1 (2

Fig. 25. The two possible forms of double points in the diagram of an oriented
knot. The crossing of type 1 has characteristic epsilon = 1 and the type 2 has
characteristic e = —1.

Algorithm 3.14 (Wirtinger presentation of the knot group) Input: A
knot projection of a knot K. Output: The Wirtinger presentation of w(K).
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1. Label all overcrossing arcs in the projection by g; for 1 < i < n wheren
is the number of double points in the projection starting at any point and
then assigning the labels in order corresponding to the orientation of the
knot.

2. For each double point, determine its characteristic sign, see figure 25.
The characteristic can be most easily determined by the “right hand rule”
which says that if you spread your thumb at right angles from your fingers
and point it along the overcrossing arc, and if your finger point along the
undercrossing arc, the characteristic is 1 and -1 otherwise (along being
taken to mean along the orientation of the knot).

3. w(K)={g1,92,  ,gn}|{r1,7r2, -+ ,rn}) where the relators are given by
T = gjg;qgk_lg? and €; is the characteristic of the crossing associated
with 7.

It can be seen that one relation can be derived from the others and thus
a knot group has deficiency one. The knot group is an invariant of knots as
is trivially seen by definition but it is not complete. Thus if two knots have
isomorphic knot groups they are not necessarily isotopic. However if they
have non-isomorphic groups, the knots are distinct. The unknot U has the
knot group constructed by a single generator and no relations, i.e. m(U) = Z,
the infinite cyclic group. It is a practical observation that the Wirtinger pre-
sentation can often be simplified considerably in that some generators are re-
movable [38]. In particular, 7(K) for the torus knot T}, 4, which is a knot that
winds around a torus p times the short way around (meridionally) and ¢ times
the long way around (longitudinally), is given by 7(K) = ({a, b} : a? = b?)
[49].

The Square and Granny Knots The knot group is not a complete in-
variant. We wish to illustrate this by an example. The knot groups of the
square S and granny G knots are isomorphic but the knots are distinct. The
demonstration of this fact will occupy this section. For a picture of these
knots, see figure 26. We follow algorithm 3.14 to compute the knot groups.
Both knots receive six generators and six relations. All crossings in the granny
knot have characteristic -1 as well as three crossings in the square knot, the
other crossings in the square knot have characteristic 1. We thus write down
the Wirtinger presentations.

7r(G) _ {91792793794,95,96} | 9692 = g291; 9sgi1 = gige; (47)
9196 = 96925 9294 = g493; 9493 = 93955 93gs = 9594

71'(5) _ {91792793,94,95,96} | 9g6g2 = g291; 9sgi1 = gige; (48)
9196 = 9692; 93g2 = 9294; 9294 = 94935 9493 = g3gs

Three generators may be defined in terms of the other three in both groups
and after some simple manipulation we obtain
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Fig. 26. The construction of the Wirtinger presentation of the fundamental group
of the complement of the (a) square and (b) granny knots.

(49)
919291 = 9291925 929392 = 939293

ﬂ(G)w(S):<{gl,gz,g3}| >

Fig. 27. The (a) square and (b) granny knots from figure 26 transformed into
closed braids.
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Even though the knot groups are isomorphic, the knots are distinct. This
can seen by deforming the knots into closed braids and computing their Jones
polynomials. The transformation is straightforward and the result is shown
in figure 27. Reading off from the figure, we obtain that

3 3

G~ 07 °03; S~ o0} (50)

Recalling the algorithm to compute the Jones polynomial yields

Vot =3— (B 4173 + (P +t72) = b+t Vs(t) = (t+5 -4’
(51)
and we see that the knots are distinct proving that the fundamental group is
a incomplete invariant.

Peripheral Group System The fundamental group is not a complete in-
variant but it is possible to refine our methods to construct a complete in-
variant from the fundamental group, the peripheral group system. This is the
only complete invariant of knots that we can readily compute for all knots.
The problem is that distinguishing knots via the peripheral group system
requires distinguishing groups with respect to isomorphism which is known
to be an undecidable problem [2; 3, 64].

The complement of a knot is uniquely specified (up to isomorphism) by
its peripheral group system which consists of the fundamental group and
a few subgroups thereof (this is Waldhausen’s theorem [73], see [40] for a
more accessible proof). It is however known that the word problem for any
fundamental group of any knot is solvable [74]. If the knot is alternating, the
conjugacy problem is also solvable [5].

We define the linking number of two curves a and b, denoted by lk(a,b)
as the weighted sum of the characteristics € of each crossing. We define a
meridian m; and a longitude [; of a knot component K; by requiring the
following properties: (1) m; and [; are oriented, polygonal, simple and closed
curves in 9V (K;), the boundary of the thickened neighborhood of K; which
we denote by V' (K;), (2) m; and [; intersect in exactly one point, (3) m; is null
homologous (m; ~ 0) in V (K;) and I; ~ K; in V(K;), (4) l; ~ 0 in C (K;)
and (5) Ik (m;, K;) = 1 and Ik (I;, K;) = 0 in S3. The above five properties
define m; and I; uniquely up to isotopy on the boundary of V(K) [?] (see
figure 28 for an illustration). The meridian-longitude system pair M(K) for
a j-component knot K is the pair of sets ({mi, ma, -+ ,m;},{li,l2,--- ,[;}).
Interestingly, if the longitude is trivial (equivalent to the identity element)
in the knot group, the group is infinite cyclic; i.e. the group is isomorphic to
the fundamental group of the complement of the unknot. Furthermore, the
meridians and longitudes commute with each other in any knot group [49].

The meridians can be taken as the Wirtinger generators of the knot group.
The longitude of a knot may be read off the projection very easily. Begin with
the first generator and traverse the knot in the direction of its orientation.
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A\

Fig. 28. The thick curve displays the trefoil knot with an orientation. The thin
curve which is parallel to the trefoil knot is the longitude; the orientation of the
longitude is the same as the knot. The thin curve encircling both trefoil and longi-
tude at the top left hand corner is the meridian. Note that the five conditions given
in the text are fulfilled by these curves.

Whenever undercrossing an arc, write down the generator of the undercrossed
arc to the power of the negative of the characteristic of the crossing. After the
full traversal, append as many copies of the initial generator (or its inverse)
to make the total sum of exponents equal to zero.

The meridians and longitudes of M(K') may be considered to be elements
of m(K) by choosing a path p; in C'(K) from the base point z( to the (unique
by definition) point m;NI; for each i. Then the subgroup (m;, ;) of 7(K), gen-
erated by m; and [; is independent of the choice of p; up to conjugation. The
peripheral group system of a j-component knot K is p(K) = (n(K); M(K)).
By an isomorphism ¢ between two peripheral group systems p (K) ~4 p (K'),
we mean 7 (K) ~ 7 (K’) such that ¢ (m;) = m/; and ¢ (I;) = U/; for all . Tt
can be shown that for any two knots K7 and Ko, p (K1) = p (K32) if and only
if Ky = K3 [49]. If we restrict attention to prime knots of a single component,
we have 7 (K1) ~ 7 (K2) if and only if Ky ~ K [49]. Thus the problem of
knot isotopy can be transformed into the problem of peripheral group system
isomorphism. Since it is not possible to determine, in general, if two groups
are isomorphic, this does not solve the knot classification problem.

4 Classification of Braids and Knots

In this section we will discuss the word, conjugacy, Markov and minimal word
problems introduced in section 2.8 in detail. There are a number of distinct
solutions to the word and conjugacy problems in B,, each of which has special
features and gives additional insight into the problem and braids in general.
We shall discuss briefly the solutions due to Garside as they are historically
the most important ones and have had ground-breaking influence on the field.
Then we shall discuss a new solution to both problems. The Markov problem
is unsolved at present but we will discuss some of its features and why it is so
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difficult. Lastly, we will present a number of results about the minimal word
problem. It is computationally expensive to solve (NP-Complete) and so we
present a heuristic algorithm and some simulation approaches and interesting
results arising from them.

4.1 The Word Problem I: Garside’s Solution

In the Artin presentation, the word problem asks whether two n-braid words
a = oglol--op and B = olo)” - ~0;)7§ such that 1 < a;,b; < n and
€,m =x1for1 <i<oand1l<j<pareequivalent to each other (denoted
a ~ 3) under the equations o;0; ~ o;0; for |i — j| > 1 and 0;054110; =
0i+10;0t + 1. This problem is traditionally approached by trying to find an
algorithm which will use the two braid group relations to construct, from any
braid, a unique normal form. A unique normal form « of the braid « and the
corresponding form [ of the braid § are exactly equal (o = ) if and only if
a =S N N

Artin was the first to describe a normal form to solve the word problem
for braids [7] but the normal form has a exponentially growing number of
crossings in terms of the original number of crossings and so is not as useful
as other methods. Garside constructed another unique normal form which
has many important properties [37]. Garside’s method begins with the crucial
proposition,

Proposition 4.1. For any 0;1, we have 0;1 ~AYA, 1dy1ipdio1a-

Together with the fact that 0;4,, ~ A, 0,—; (see proposition 2.19), this
means that we may put any n-braid word « into the form o ~ A 9a where
o' is a positive braid word and ¢ the number of inverse generators present in
a. Next we need to construct the diagram D(a’) of the positive braid .

Definition 4.2. The Cayley diagram D(b) (or diagram for short) of a pos-
itive braid word b is the set of all braid words equivalent to b.

Because of proposition 2.21 which states that two positive and equal braid
words are positively equal, the following algorithm obviously constructs D(b)
given a positive b.

Algorithm 4.3 Input: A positive braid word b. Output: The diagram D(b)
of b.

1. We define the set Do(b) by Do(b) = {b}.

2. The set D;(b) is obtained from the set D;_1(b) by adding to D;(b) all
the braid words which can be obtained from any member of D;_1(b) by
applying any braid group relation exactly once and the deleting all those
which are already contained in the sets D;(b) for 0 < j < j.
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3. Step 2 is recursively applied until an integer m is reached for which
D,,(b) = 0. Tt is obvious from the construction of the sets that a finite m
always exists.

4. The set D(b) is then the union of the D; for 0 < i < m.

We note that, in general, D(b) contains a number of elements which grows
exponentially both with the length and number of strings in . Once D(«) has
been fully enumerated we select from it a word of the form AP« for which
p is maximal. Then we construct D(«'’) and choose the braid word o/ from
D(a") which has the lowest integer associated with it, the decimal expansion
of which is given by the concatenation of the generator indices in the braid
word (020103 has associated integer 213). The braid word o is called the
base of the diagram D(a’). We define the Garside normal form of the braid
a to be ag = AP~9a/"". We refer to p — g as the Garside exponent and to o'
as the Garside remainder. It can be shown that the Garside normal form is a
unique normal form and that thus two n-braid words « and ( satisfy a ~ 3
if and only if ag = [g. Executing this method in practise is time-consuming
due to the size of the diagram. There exists an efficient polynomial-time
algorithm to extract the maximal number of A,, from o’ due to Jacquemard
[44] which we shall not present here.

The word problem was first solved by Artin [7] and then by Garside [37].
Both of these solutions were algorithmic with exponential complexity. As
mentioned above, Garside’s algorithm can be made polynomial time due to a
new algorithm by Jacquemard [44] to extract braids. The word problem for
braids is important enough for many people to have studied it after Garside.
The most efficient algorithm (linear in n and quadratic in L) is given in
[15]. Below we present a new algorithm based on rewriting systems. It is
not as efficient as the best algorithm for the word problem but it is easily
generalizable to the conjugacy case and it is very simple to apply. Because of
these features, we regard it as a competitive algorithm.

4.2 The Word Problem II: Rewriting Systems

In this section we will develop a new algorithm based on rewriting systems
which are used as a tool in theoretical computer science. We begin with a
finite alphabet of constants A and a finite set of variables X. A term t is a
finite ordered sequence of constants and variables t = ajas - - - a, withn >0
(i.e. empty terms are allowed) and a; € AUX. A word w is a finite ordered
sequence of constants w = byby - -+ by, with m > 0 and b; € A. A substitution
p for a term ¢ is a map which assigns a word to each variable in ¢; the resultant
word is denoted by pt. A term rewriting system (TRS) R = {(I;,7;)} is a set
of ordered pairs of terms I; and r;. Each ordered pair in R is referred to as a
rule or rewrite rule and is often written in the form I; — r;; the whole TRS
is sometimes denoted by —g. A TRS R = {(l;,r;)} is applied to a word
wp by determining if wy contains the word pl;, for some substitution p, as
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a subword. If and only if wg contains pl; is pl; replaced by pr;. If — is a
rewrite rule, then « is its inverse, < is its symmetric closure («— U —) and
—* is its reflexive-transitive closure (— o — o---0 —). Two terms ¢ and s
are said to be joinable if there exists a term r such that t —* r «—* s. Any
l; is called a reder and any r; is called a reduct (these are abbreviations of
reducible expression and reduced term).

A word wy is thus rewritten into a word wy if and only if R may be applied
to wo. We may generate a rewrite chain of words wg —g wy —x -+ in this
manner. R terminates if and only if there exists no rewrite chain of infinite
length. R is locally confluent if and only if any local divergence «+ o — is
contained in the joinability relation —* o «*. R is confluent if and only if
any divergence «* o —* is contained in the joinability relation —* o «*. R
is complete if it is confluent and terminates. If R is complete a unique normal
form exists for each word [8]; the final form obtained by applying R to the
word a maximum number of times.

It should be noted that the computational power of term rewriting systems
is identical to that of Turing machines, i.e. one may be simulated by the other
[70]. According to the Church-Turing thesis [29], this means that any function
which may reasonably be termed computable is computable using a TRS.

It was proven by Birkhoff [24] that the symmetric-reflexive-transitive
closure <% of a TRS R = {(l;,r;)} is equivalent to the set of equations
& = {l; = r;}. It is an obvious corollary to Birkhoft’s theorem that if there
exists a complete TRS R over the alphabet A = {f;, fi_l} for which <%
contains exactly the equations {&, f; f[l = e, f[l fi = e}, then R solves the
word problem for the group G = ({f;}, E). Note that R also solves the word
problem for the monoid associated with G, i.e. the monoid obtained when
the inverses of the generators are added to the set of generators and the fact
that the generators and inverses are in fact inverses (f; fi_1 =e, fi_1 fi=e)
added to the set of equations.

Termination It is, in general, undecidable whether a TRS terminates or not
[43]. Since any Turing machine can be modeled using a TRS this is essentially
due to the undecidability of whether a Turing machine will stop, the Turing
Halting Problem [71]. It is however decidable for a TRS without any variables
[33]. Thus, in general, a termination proof is specific to a particular TRS and
must be given for it. A common strategy for proving termination is to use a
reduction order on the symbols involved in the TRS. We define a reduction
order <, as a strict order over the alphabet and variables of the TRS which
satisfies:

1. compatibility: For all terms u, v for which u <, v, we have zuy <, xvy
for any terms x and y.

2. closure: For all terms u, v for which u <, v and all substitutions o, we
have ou <, ov.

3. basis: <, is well-founded, i.e. there exists a simplest term under <,.
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If one can show that every possible rewriting operation simplifies any term
with respect to such an ordering, then the TRS terminates [32]. Furthermore,
a TRS R terminates if and only if there exists a reduction order <, which
satisfies r; <, I; for every rule l; — r; € R [8]. This is true because every step
of the rewriting process simplifies the term and there exists a simplest term.
Another useful result is that a TRS terminates if and only if it terminates
for all instances of its redexes [34]. Some conditions under which the union
of two terminating TRSs is terminating are analyzed in [34].

Confluence Like termination, confluence is, in general, undecidable [8].
However, for terminating systems there exists a mechanizable method for
deciding confluence [41] that rests on Newman’s Lemma which states that
a terminating TRS is confluent if and only if it is locally confluent [62] (we
shall prove a generalization of this in lemma 4.11). Local confluence can be
decided by a systematic method which searches for critical pairs in the TRS.
The concept of critical pairs is difficult to trace in history; for an attempt at
a historical survey see [27] and for a good technical treatment see [41].

Given a TRS R = {(l;,7:)}, an overlap is a word w = abc such that
ab = pl; and be = nl; for some words a, b and ¢, two (possibly equal) integers
7 and j and substitutions p and 7. Clearly the overlap abc may be rewritten
to both pric and anr;. An overlap is non-critical if the reducts are joinable,
pric <% anr; and critical otherwise. A critical pair is the (unordered) pair
(pric, anr;) which arises from a critical overlap. It is obvious that if R contains
critical pairs, it can not be confluent. The fact that the non-existence of
critical pairs is both a necessary and sufficient condition for local confluence
is called the Critical Pair Lemma [46]. Later we shall prove lemma 4.12 which
contains the Critical Pair Lemma.

Completeness If we can find a reduction order for a TRS R, thereby prove
termination and find that there are no critical pairs, R is complete and thus
solves the word problem for <%. A general procedure for what to do when
we can not do this is called Knuth-Bendix completion from their seminal
paper [50]. Again a historical account of this procedure is tangled and [27]
is an attempt to unravel it. We shall follow the common practice to call it
Knuth-Bendix completion even though, by their own admittion, the initial
idea was not theirs.

Suppose we have a set of equations £ on an alphabet 4 and a total order
< 4 (this is a reduction order) on .A. Construct a TRS R from & by creating
arule I; — r; in R from the equation I; = r; in &£ for all equations in £ such
that the rules are ordered such that {; >4 r;. Now <% is equivalent to £
and each rule represents a simplification in terms of < 4. Clearly there exists
a simplest word, the empty word, and so R terminates.

If there are no critical pairs, R is locally confluent and thus complete.
If there are critical pairs, order them with respect to <4 and append them
to R as new rules. Termination still holds and so we continue this process.
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We may delete duplicate or redundant rules from R between the steps of
this method to obtain a smaller TRS. If this method terminates, we have a
complete system [50] [42]. If it does not terminate, a complete system may
still exist which contains an infinite number of rules. It is possible to collect an
infinite number of rules into a finite number of rules by introducing variables.
The Knuth-Bendix algorithm has been implemented by several people and
can be used to determine, in some cases, whether a complete system exists.
The CiME implementation was used for this thesis [53]. Producing rules with
variables and proving the non-existence of critical pairs is, at present, beyond
the computer implementations and must be done manually.

The process described here is simplified; there are more pitfalls, in general,
and the method has been considerably extended to take into account many
other features (many relevant references are in [27]). The method as described
is enough for our purposes here however and is generally enough for a word
problem in a finitely presented group.

Having reviewed TRS’s, we are now in a position to find a TRS for the
word problem in B,,. The braid group B,, is defined formally as

By, = ({o1,02, -+ ,0n-1} 1 0i0i110; = 0i110:0411; (52)
oio; = oj0; for |i — j| > 1)
Given a finitely presented group G = (X, E), we can define an associated
monoid M(G) = (XUX ' EUaa"' =1) for any a € X. It is clear that
the equivalence and conjugacy classes of the group G and the monoid M (G)
are identical. In order to solve the word problem for B,, we augment the
monoid M (B,,) with the generator of the center of B,, A2 to form the
monoid

M* (Bn) = <{Uit1,(7§:1, T agr:i:ilvArﬂz:z} : Arﬂzﬁai = UiArﬂz:Z;
Af2A$2 = Uiilafl =e;
Ufﬂa;ﬂ/jFl = aj[l/ﬂaiﬂ for |i — j| > 1; (53)
tothott = sttt )

It is obvious from the definition of the monoid M ™ (B,,) that a solution of its
word and conjugacy problems provides a solution for the word and conjugacy
problems in the group B,,.

We will use Knuth-Bendix completion upon the oriented rules of Mt (B,,)
under the reduction order <,

2 -2 —1 —1 —1
An<bAn <p01 <p02<p  <pOpn-1<p0; <p0y <p " <p0, 4

(54)
In practice, this process is laborious and would occupy prodigious space if
described in detail. For this reason, we will simply state the result and prove
it to be correct.
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For what follows, we shall represent a braid of the form A2 P as the pair
(k, P). The reason for this is to effectively remove from the braid, in the
process of rewriting, any subbraid which lies in the center of the braid group
B,,. The reason for this will become apparent when we extend our solution to
the conjugacy problem. Removing any A2* from any part of a braid can be
done without loss of information because A2* is the generator of the center
of B, and thus its position is irrelevant. By Knuth-Bendix completion and
the necessary manual labor, we obtain the following rewriting system.

i—1 n—1
Wi ={(1)o; ' — H [dj1a1 ] dirari1 H [djia1;] & k—k—1;
Jj=1 j=i+1

(2) oi05 — ojo; for j <i—1;
(3) i0i—1Po; — 0i_10;0,—1 P;

(4) UiUi—lQUz‘—lei,j — Ui—laio'i—lei—17jUiR+ fOI‘j < i;

n—1 n—1
(5) H diia1,:S; — H S;i & k—k+1}
=1 i=1

(55)

The variables P, ), R and S; are (possibly empty) words in the generators
o (and not their inverses 0;1) subject to the restriction that the highest
generator index k is i — 2, i — 2, ¢ — 1 and 7 respectively and the lowest
generator index in R is j, where ¢ and j refer to the values of the generator
indices of the respective rules. The word R™ is obtained from R by increas-
ing all generator indices in R by one. Note that rules 1 and 5 require two
replacements to be made simultaneously. A similar, unpublished TRS was
also found using Knuth-Bendix completion by Yoder [78]. Rules 1 and 5 are
simple to understand; the other rules are illustrated in figure 29.

Theorem 4.4. W,, is complete and solves the word problem for B,,.

Proof. Tt can be checked easily but laboriously that the system terminates,
there are no critical pairs and that its symmetric-transitive closure is the
monoid we began with which proves the theorem.

The rules of a TRS are to be applied in a non-deterministic way and a
complete TRS always reaches the unique normal form no matter what strat-
egy of rule application is chosen [8]. Since W, is complete and all strategies
are equivalent, we will choose the following strategy.

Algorithm 4.5 Input: A word w € B,,. Output: A word w' € B, which is
the unique representative of the equivalence class of w.

1. Apply rule 1 of W,, as many times as possible.
2. Apply rules 2, 3, 4 and 5 of W,, as many times as possible in order
proceeding to the next rule only if the current can no longer be applied.
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Fig. 29. Rules 2, 3 and 4 of TRS W, illustrated.

3. Loop step 2 until no rule may be applied to the word at all. In this case
w’ has been found.

It is clear that algorithm 4.5 solves the word problem from the complete-
ness of W, and the fact that once rule 1 is applied as many times as possible,
it can not be applied again no matter what other rewrite steps follow as
there will be no more inverse generators. From this algorithm, we are able to
deduce the computational complexity of this word problem solution.

Theorem 4.6. W,, solves the word problem for any word w € B,, of word
length 1 with complexity O (12714),
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Proof. This can be checked easily by counting how many times the rules are
used.

4.3 The Conjugacy Problem I: Garside’s Solution

Extending the word problem solution of Garside to the conjugacy case is not
hard. First we define two new terms.

Definition 4.7. If a positive word b = if for two braid words i and f such
that 1 < L(i) < L(b), then i is called an initial route of b and f an associated
final route. Note that the definition requires exact equality (=) and not group
theoretic equivalence ().

We begin by constructing all possible initial routes of A,,. This is easily
done using D(A4,,). Replace all of these routes by the base of their diagrams
and delete duplicates. This is the set of initial routes of A, and denoted by
1(4,).

We will now form a set S(3) for a braid word g called the summit set of
the braid. This set is the analogue of the Cayley diagram, which we used for
the word problem, for the conjugacy problem. We construct the summit set
as follows. First construct the Garside normal form of 3, i.e. B¢, and note its
exponent. The set S1(8) is then constructed by conjugating G¢ by each word
of I (4,), computing the Garside normal form of the result and deleting all
those words of lower exponent than . Iteratively, the set S;(3) is obtained
from the set S;_1(83) by conjugating each element of S;_1(3) by each word
of I (4,), computing the Garside normal form of the result and deleting all
those words of lower exponent than Gg.

Suppose the Garside exponent of (G5 is m and its exponent sum is s.
Every word in any S;(/) has exponent sum s and Garside exponent p > m
by definition. The Garside remainder of 3¢ is B and so we have

s =L (Bg) —mL(Ay) (56)
L (Bg) — s

T o7

ps e (59)

but we also have p > m and so there are only finitely many p that satisfy the
requirements. Hence there are only finitely many distinct words with Garside
exponent p and exponent sum s. Thus the process of constructing the sets
S;() terminates, i.e. there exists a finite integer j such that S;(5) = S;4+1(8).

Definition 4.8. We define the summit set S(8) to consist of all the elements
of S;(B8) which have mazimal Garside exponent. The summit exponent ¢ is
the Garside exponent of all these braid words and the summit remainder is
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the Garside remainder Bs of the unique element in S(3) with smallest tail.
The summit form of 3 is then 3s = Al fs.

We state, without proof, the main result of Garside.

Theorem 4.9 (Garside’s Conjugacy Theorem [37]). Two braid words
01, B2 € By, are conjugate if and only if their summit forms are identical.

Proof. For a proof, see [37, 14].

Like the word problem, the conjugacy problem is very important for braid
and knot theory and so has received much attention. The first solution was
produced by Garside [37] and the best algorithms are given in [15, 36]. We
should remark that Jacquemard [44] has used his extraction algorithm to
obtain good practical results for small n. All these algorithms still require
an exponential amount of computation time as a function of n and L. The
important question of whether conjugacy is solvable in polynomial time is
solved positively in the next section.

4.4 The Conjugacy Problem II: Rewriting Systems

Conjugacy in Free Groups Suppose that G = F,, the free group of rank
n. This group is generated by n elements {f;} for 1 < < n and no relations
[45]. A general word w € F,, takes the form

w = P1 £P2 .. pm, 1§sk§n (59)

S1 7 82 Sm

Since there are no relations in JF,,, the word w is unique over its equivalence
class if and only if s; # s;41 for all 4. This condition is trivially obtained from
any word w € F,, by applying the (obviously) complete rewriting system

R (Fo) = {f0f8 = [IT9, V1 < s <n} (60)

Thus R, (Fy) solves the word problem in any free group F,. Moreover, it
does so in a time proportional to the length of the word w.

Consider now the conjugacy problem in F,,. We define the i** cyclic per-
mutation C*(w) of a word w in the general form of equation (59) by

CHw) = fsi - fomd fom foLfoe - s (61)
such that
m
P+ Z Pr =1 (62)
k=j+1

Intuitively, the i*” cyclic permutation is obtained by taking the last i gener-
ators in the word w and moving them to the front of the word w one by one.
We shall say that two words w and w’ are cyclicly permutable (denoted ~.,)
if and only if there exist an i such that C%(w) ~ w'. It is obvious that cyclic
permutability forms an equivalence relation for any group G.
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Proposition 4.10. For any group G, the equivalence relation of cyclic per-
mutability (~¢p) is identical to that of conjugacy (=.).

Proof. Any group G has a presentation which may be obtained from some
free group F,, of rank n by adding relations [31]. Moreover, if the conjugacy
problem is solvable in one representation, it is solvable in all [57]. Suppose
w Rcp W, then there exists an ¢ for which

W' CHw) = [ - fL ST S (63)
where .
pit D pe=i (64)
k=j+1
Let .
Y= SRS S (65)
Then
w' A fa e ST (66)
~ W’Wfsf T (67)
~ fy_lw’y (68)
Thus we have w =, w’. Now suppose w ~. w’, then there exists a v such that
W~y (69)
If the word length of v is L(7y), then we have
CEO(w') =4y tw ~ w (70)
Thus w ~Rgp w'. |

We will refer to the set of words which contains the word w and all its
cyclic permutations as the cyclic word c(w). If L(w) = m, then this set
contains |c(w)| = m elements. Given two cyclic words c(w) and c(w’) we test
their equivalence by attempting to construct an isomorphism ¢ : ¢(w) — c(w’)
such that t(a) = a for all a € ¢(w). Clearly |c(w)| = |e(w')| is a necessary
condition for the existence of ¢. If and only if ¢ exists, the cyclic words are
considered equal, c(w) = ¢(w’). If and only if ¢(w) = ¢(w’), we have w =, w’
by proposition 4.10. The set ¢(w) may be visualized as the word w ”made
circular” as in figure 30.

The existence of ¢ may be established by testing the members of c(w)
for equality with the members of c¢(w’) pairwise in the following manner:
Select from c(w) an arbitrary member, a say. Check a for equivalence with
all members of c¢(w’). Clearly, if and only if there exists a b € c(w') such
that a = b, an ¢ exists. Since every word has length m and there are m
words in c(w’), this comparison will take a time proportional to m?. Thus
it is possible to test the equivalence of two cyclic words of length m with
complexity O (m2)
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Fig. 30. The word w given in equation (59) bent into a circle. While the circularity
removes the notions of beginning and end of a word, it preserves the directionality
of it.

Rewriting Systems for Cyclic Words We shall call a TRS cyclicly ter-
minating, cyclicly confluent and cyclicly locally confluent if it is respectively
terminating, confluent and locally confluent under application to all cyclic
words over the alphabet of the TRS. It is obvious from the above discussion
that a cyclicly complete TRS solves the conjugacy problem. For this reason
it is important to develop results about cyclic completeness along the lines
of the results for linear words in order to obtain a conjugacy solution.

Termination in Cyclic Rewriting Systems We have seen that a TRS R
terminates if and only if a reduction order exists [8]. In what follows, we shall
assume that this reduction order is a total order; note that this is a stricter
requirement than that of a reduction order. Suppose that the alphabet of R
is A = {fi} for 1 < i < p. By assumption, p is finite. Consider the total
order <z defined by f; <r fi+1 for all i. This can be done without loss of
generality as a mapping from A to itself can change the order. Recall that R
terminates if and only if r; <z [; for every rule [; — r; € R.

We introduce an integer valued weight metric function g(w) and an integer
valued length metric function L(w) on the set of words w written on the
alphabet 4. The metrics satisfy

9 (far fas -+ fam) = 9 (far) + 9 (far) + -+ 9 (fa,) (71)
L(falf(m : "fam) - L(fa1) + L(fa2) +o +L(fam) (72)
L(fi)=1 (73)
g9 (fi) <g(fit1) (74)

We shall call a rule length reducing if L(r;) < L(l;) and weight reducing if
g(r;) < g(l;). Any rule is a c-obstruction (for commutation-obstruction) if
and only if it keeps constant both length and weight. That is, it is a rule
which changes the position of the letters only.
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A c-obstruction obstructs cyclic termination as there exist cyclic words
which would give rise to an infinite rewriting chain due the changing of rel-
ative position of subwords by the c-obstruction. An example is the cyclic
word c¢(afaf) under the TRS R = {af — Ba}. The rewriting chain will
loop between the two states c(afaf) and c¢(Baaf); the period of the loop
may, in general, be arbitrarily large. Such looping may be dealt with in two
ways. Firstly, one may compare each new cyclic word with the entirety of
the rewrite chain so far enumerated. If equality is found, looping has been
detected and one may stop. Secondly, one may determine if a subword of the
current word commutes with the rest of the word. If this can be determined
and such a subword is found, the subword may be extracted from the word
and the two words should then be rewritten separately. The first method is
computationally expensive and does not produce a unique normal form as we
would have to consider the entire loop at the end of the rewrite chain as the
identifying set of the word. The second method is not necessarily applicable
but if it is, it will terminate in a set of subwords which uniquely identify the
word. The advantage of the second method over the first is that the number
of elements in the set has an upper bound.

The braid groups, as we have seen, have non-trivial center. In fact the
generator of the center contains every generator. This fact makes it possible
to rewrite any inverse generator in terms of inverses of the generator of the
center multiplied by generators. As in the word problem case, we shall remove
the generators of the center from the word and thus this replacement rewrites
the entire braid word with which we shall work in terms of generators only.
For the splitting of words to get rid of c-obstructions to fail we need to be
in a situation in which we have a word abc such that abc = cab, ab ~ ba,
ac % ca, be % cb. This can only occur if there is cancellation between a and
b in the word ab but this can not happen if there are no inverse generators.
This proves that in groups in which inverse generators may be replaced by
inverses of elements of the center and generators, this method of overcoming
c-obstructions is valid.

We conjecture that a TRS R cyclicly terminates if and only if it terminates
and contains no c-obstructions or contains c-obstructions that can be removed
in the above way.

Confluence in Cyclic Rewriting Systems Newman’s Lemma [62] ex-
tends easily to the cyclic case as we show below.

Lemma 4.11. A cyclicly terminating TRS R is cyclicly confluent if and
only if it is cyclicly locally confluent.

Proof. The proof is similar to the standard proof (see [41]) and follows im-
mediately from figure 31.

The Critical Pair Lemma states that a TRS is locally confluent if and only
if it has no critical pairs. Recall that a critical pair arises from an overlap
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local
~. confluence .~

Fig. 31. The proof of Newman’s Lemma (lemma 4.11) in diagrammatic form. We
begin at the top with a local divergence which is rectifiable by assumption and
thus by induction any global divergence is also rectifiable. It is because of this
diagrammatic proof that Newman’s Lemma is also known as the Diamond Lemma.

of two redexes in a word which gives rise to a local divergence of rewriting
paths which do not meet again. Given a TRS R = {({;,7;)}, a cyclic overlap
is a cyclic word c¢(w) = c(abed) such that abc = pl; and cda = nl; for some
words a, b, ¢ and d, two (possibly equal) integers ¢ and j and substitutions p
and 7. The cyclic overlap c(abed) is rewritten to both c(pr;d) and c(bnr;). A
cyclic overlap is non-critical if the reducts are joinable, c(pr;d) <% c(bnr;)
and critical otherwise. A cyclic critical pair is the (unordered) pair of cyclic
words (¢(prid), ¢(bnr;)) which arises from a cyclic critical overlap. It is obvious
that if R contains cyclic critical pairs, it can not be cyclicly confluent.

For example, consider the rewrite system R = {abxba — cxc} over the al-
phabet A = {a, b, ¢} and some variables x and y. Clearly R contains the cyclic
critical overlap abzrbabyb which is to be rewritten into bxbcyc and caxcbyb. This
cyclic critical pair may be resolved by noting that if the variable contained
between the ¢ letters is less than the other, it is that cyclic word which is
to be prefered under the lexicographic order ¢ < b < a. That is, we have to
add a conditional rule depending on the relative value of the variables. This
global rule must be applied, if applicable, with preference over the ordinary
local rule. In this way we have extended Knuth-Bendix completion to the
cyclic case; note that all rules added in this procedure are global whereas the
usual rules of normal TRS’s are local. We shall now prove the extention of
the Critical Pair Lemma for the cyclic case.

Lemma 4.12. A TRS R = {(li,r:)} is cyclicly locally confluent if and only
if it contains neither critical nor cyclicly critical pairs.

Proof. This can easily be checked by going through all possible types of
overlap.
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It should be emphasized that the proof lemma 4.12 does not make any
assumptions about the termination of R. So we have a definite method for
attempting to find a conjugacy problem solution in terms of rewriting. We
shall use the braid groups to give an example of this completion process.

4.5 Markov’s Theorem

Recall that Markov’s theorem says

Theorem 4.13 (Markov). Two braids a € B,, and € B, have isotopic
closures if and only if o can be transformed into B by a finite number of
applications of conjugacy and stabilization moves.

Corollary 4.14. The closure of the braid o € B,, is isotopic to the unlink
of k components if and only if o can be transformed into the trivial braid in
By by using conjugacy and stabilization mowves.

Fig. 32. Both conjugacy and stabilization are displayed here. We begin with braid
B. Conjugation surrounds B with A and A~! on opposite sides which clearly cancel
due to the closure. Stabilization introduces a simple loop at the bottom right of the
braid, adds a new string to the braid and thus increases the braid group index by
one.

Conjugacy was discussed at length already. Stabilization is the move o «
aoy, with a € B, (see figure 32). While the conjugacy move is a move within
a particular braid group, the stabilization move connects two adjacent braid
groups. Therefore the question of detecting closed braid equivalence turns
into a combinatorial question about the infinite family of braid groups.

Given a knot, we may produce an equivalent knot by taking any segment
and twisting it about an axis in the projection plane by 7 while keeping
the rest of the knot stationary. This procedure corresponds to the zeroth
Reidemeister move and adds one crossing to the diagram. Any crossing of
this type is called nugatory. If we represent a knot by a closed braid by
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virtue of Alexander’s theorem, we may also add such nugatory crossings via
a combinatorial move, called the Markov or stabilization move. Stabilizing a
braid a € B,, corresponds to the operation o — ao;=! or its inverse. Clearly
stabilization increases or decreases the number of strings in the braid and so
represents a move in the family of braid groups as opposed to the conjugacy
and equivalence moves which are contained in a single braid group.

Markov stated in 1935 [55] that two closed braids are topologically equiva-
lent if and only if they differ by stabilization and conjugacy moves (recall that
conjugacy contains equivalence). This statement became known as Markov’s
theorem and was first proven in [14]. In its original form, Markov’s theorem
assumes that the closed braid is embedded in S® or R3, this can however, be
generalized to an arbitrary 3-manifold [51]. Markov’s theorem transforms the
link isotopy problem to a combinatorial question about braids. If two braids
a € B, and § € B, (with n and m possibly different) are related by stabi-
lization and conjugacy, they are called Markov equivalent which is denoted by
~ . The decision problem of whether o ~j; (8 is called the Markov problem
or the algebraic link problem. It is possible to find a single move of which
both stabilization and conjugacy are special cases and to formulate, in this
way, Markov equivalence in terms of this so called L-move [52]. While this
L-move is intuitive, it is not obvious whether the problem has been simplified
by this reformulation.

The first question which arises is whether there exist non-conjugate
Markov equivalent braid words in the same braid group, that is whether
a solution to the conjugacy problem will solve the Markov problem. This
is negatively resolved by showing that the two 4-braids a = oJ"c%o? and
B = ofob ot with m,n,p different, odd and at least three in absolute value
are not conjugate but Markov equivalent [61]. It might be thought that it
should be possible to reduce the number of strings in a closed braid equiva-
lent of the unknot to one. This is true as all equivalent closed braids can be
reached from each other via Markov’s theorem but the transition involves,
in general, increasing the number of strings before they may be reduced to
a single string. In other words, a greedy reduction of strings does not reach
the minimum string number, also known as the braid index (not even for the
unknot representatives) [58].

It is a practical observation that finding a series of moves to demonstrate
the Markov equivalence of two closed braids is very difficult. The difficulty
of finding such a sequence has lead Birman to believe that it may be simpler
to solve Markov equivalence for two braids representing prime knots. While
this may be true, it is not, in general, easy to decide whether a braid rep-
resents a prime knot. Schubert [67] proved that the factorization sequence
of a composite knot is unique and has found an algorithm [68] which finds
it. This algorithm, consequently, is able to decide whether a knot is prime.
However, the execution of the algorithm rests on Hemion’s algorithm since
it must identify the prime factors of the knot, thus no longer necessitating a
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solution of the Markov problem since it already solves the link isotopy prob-
lem (albeit impractically so). This also shows that this method of deciding
primality is not practical. Birman conjectures that a braid represents a prime
knot if and only if it is not conjugate to a split braid.

Furthermore, if Birman’s conjecture is true and we were to find an al-
gorithm to decide whether a braid was conjugate to a split braid, we would
have to solve the Markov problem for this restricted class of braids. If this
could be done, we would have a solution to the Markov problem since every
braid could be decomposed into its split components and pair-wise tested for
non-split Markov equivalence. This would not only resolve isotopy but also
give the unique prime knot factorization of the knots. Birman’s conjecture
is unproven and there exists no algorithm to test whether a braid is conju-
gate to a split braid. It is possible, however, to solve the Markov problem for
certain quotient groups of the braid groups [23].

Since the word and conjugacy problems are contained in the Markov prob-
lem, solutions for these are desirable and have been given numerous times as
mentioned before. The stabilization move represents the final hurdle before
link isotopy is algorithmically decidable and thus it would be interesting to
know when a braid o € B,y is conjugate to a braid yo*! where v con-
tains only the generators o; for 1 < ¢ < n — 1, for then one could reduce «
to « using the Markov move. While this has been done [56], the algorithm
depends on Garside’s conjugacy algorithm [37] which has exponential com-
plexity. Moreover, if two braids were reduced in this way to the minimum
string number, they are not, in general, conjugate in this final braid group if
they are Markov equivalent and thus this decision procedure does not solve
the Markov problem either.

We have defined the exponent sum exp(a) of a braid a as the sum of
the exponents of the Artin generators of a. It is obvious that the exponent
sum is a conjugacy class invariant but not a Markov class invariant because
of stabilization. Thus it is possible for two braids to be Markov equivalent
and have different exponent sums. In getting from one braid to the other,
the exponent sum must be made equal somewhere in the chain of moves;
this can clearly only be accomplished using stabilization. Stabilization can
increase or decrease the exponent sum depending whether we add o, or o, !
or remove either of these. It also changes the number of strings. We may think
that starting from a positive braid, we should be able to reach any Markov
equivalent positive braid by going through a pure positive sequence of braids;
that is, we may think that positive Markov equal braids are positively Markov
equal. We note that this would only be possible if the difference in exponent
sum between the two braids was precisely their difference in number of strings.
We conjecture that positive Markov equal braids are not positively Markov
equal.

Much work was done by Birman and Menasco on various properties of
links which could be determined from their closed braid representatives (this
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work was published in the six-paper series [16], [17], [18], [19], [20] and [21]).
They prove that there exists a complete numerical invariant for knots but
find this invariant only for knots which are closed 3-braids. The invariant
for closed 3-braids is described extensively and can be used to determine
the braid index and whether the knot is split, composite, amphicheiral or
invertible. They also define a new type of move on braids, the exchange
move, and prove a Markov-like theorem for it. See [22] for a summary of this
work.

4.6 The Minimal Word Problem

A well-known problem of combinatorial braid theory is the minimization
problem: Given a braid A € B, find a braid A,, such that A ~ A,, and
L(A,,) < L(A*) for any braid A* ~ A where L(A) denotes the word length
of the braid A.

In the Artin representation of B,,, the number of generators required to
write down a braid word, its length, is equal to the crossing number of the
topological braid. In practice, we find that by moving a few of the strings
of the topological braid, its crossing number may be reduced, making the
braid simpler. It would be especially useful to possess a general method to
compute an equivalent braid of minimum crossing number. Apart from many
applications, this problem is well-known in combinatorial braid theory and
is of independent mathematical interest.

Given a braid A € B,, in the Artin generators, the question whether there
exists an equivalent braid A’ € B,, of shorter length has been shown to be NP-
Complete by Paterson and Razborov [63]. Not only does this mean that this
question is computationally equivalent to all other NP-Complete problems; it
also means that (unless P = NP) any algorithm which answers the question
would execute in exponential-time in n. Since Paterson and Razborov’s result
refers to the minimization problem for general n, we ask whether it is also an
NP-complete question for particular n. This question is explicitly asked as
open question 9.5.6 on page 209 of [36] and it seems to have been negatively
answered in an unpublished preprint by Tatsuoka five years earlier but we
were unable to obtain it [69].

In proving the NP-Completeness of the problem, Paterson and Razborov
showed that the problem can be reduced to a known NP-Complete problem.
This does not however provide a usable algorithm. For 3-braids, a linear
complexity algorithm has been found [11] but no general algorithm for n > 3
exists. A minimization algorithm in the band-generator presentation of the
braids groups has been found for n = 3,4 but the length of the braid in
this presentation is not equal to the crossing number [76] [47]. It is untypical
of a group for which the word problem is solvable that no unique normal
form of minimal length in some naturally arising presentation exists for the
braid groups. A unique normal form of minimal length in certain natural
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presentations of free groups, HNN-extensions and free products exists, for
example.

After a little experimentation, it is clear that a braid must, in general, be
increased in length before it may be reduced to minimum length algebraically.
We show that a certain readily obtained braid provides an upper bound for
this necessary increase in length and prove several properties of this braid.
We explicitly construct a set of words which must be searched for a certain
property in order to obtain a minimal length representative of any braid.
This constitutes an algorithm to solve the minimization problem. Since the
set of words which must be searched is, in the worst case, exponential in size,
the algorithm takes an exponential amount of time to complete.

Exercise 4.15. Find a braid which is non-minimal in length and which must
be increased in length (by introducing pairs like o;0, 1) before it can be short-
ened to minimal length. An example is the braid oy0; 205 201 oy 1010301 o9.

Denote by A,, any braid which satisfies 4, ~ A and L(A,,) < L(A*)
for all braids A* ~ A. We now prove a basic lemma which connects A,,qz
and A,,. Recall that A,,,, = A, (4 A7 where s(A) is the number of inverse
generators in A and A’ is positive.

Theorem 4.16. For any braid A, it is possible to obtain A, from Amaes by
operations which monotonically decrease or keep constant the length of the
braid.

Proof. By construction A,, ~ Aner ~ A and A,,q. and A are at least as long
Ap,. Exponent sum is an equivalence class invariant so that s(A,,) < s(A).
Replace each inverse generator in A,, with the braid given in proposition 4.1
and then use equation 0;4, = A,o0,_; to bring all the fundamental braids
to the front to obtain the braid

Am,,.. = AsAm) AT (75)
~ A;S(A)AZ(A)_S(A”)A;,L (77)

But Ajee = An s A7 and since the braid groups are left-cancelative [37],
we have that
AsA=sAm) A1 A (78)

with both words positive. Since positive words are positively equal [37],
there exists a sequence of braids B; for 0 < ¢ < ¢ with By = A4/,
B, = Ai(A)_S(A’")A’m, B; and Bjy; different by a single application of the
braid group’s defining relations and B; positive for all 7. Since exponent sum
is an equivalence class invariant, L(B;) = L(A’) for all i.

From A;,q, we may thus reach the form of A4,, . in equation (77) keeping
the length of the braid constant. From this form, we may reach A,, by opera-
tions which monotonically decrease or keep constant the length of the braid.
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Thus there exists a sequence of braids W; for 1 < i < p with Wy = Anas,
Wy = Ay, W; and Wi different by a single application of the braid group’s
defining relations and L(Wj1) < L(W;), which proves the lemma. O

Theorem 4.16 basically establishes that we may reach a minimum length
representative from A,,., by rearranging and cancelling generators only; it
thus, in principle, removes the difficulty we pointed out in the introduction
of occasionally having to increase the length before being able to decrease it
to an absolute minimum.

We present an extension to the Cayley diagram construction which draws
the diagram of any braid word (as opposed to positive braid words only).
The diagram is a list of all those braid words which may be obtained from
the given word by rearranging only.

Algorithm 4.17 Input: A braid word A. Output: A list D(A) of all braid
words B which may be obtained from A by rearranging of generators only.

1. Define the diagram of zeroth order as the set Dy(A) = {A}.
2. The set D;(A) is obtained from the set D;_1(A) by the following proce-
dure:
a) Fix attention on a particular member « of D;_1(A). We read « from
left to right and decide at each position whether we may apply any
of the moves in equations (79) to (82).

00 < ojo; for |i —j| > 1 (79)

0i0i+10; < 0410041 (80)

Uiafl — 0;101- (81)

0i0; toj « 000, (82)

b) If we may, we apply it and store the resultant braid word § in D;(A)

if and only if 3 is not already contained in D;(A) for 0 < j <i.
¢) We continue to read across « until we have considered all braid words
which may be reached from « by a single application of the moves in
equations (79) to (82).
d) Apply steps (a) through (c) for every braid in D;_1(A). If D;(A) =0,
then the algorithm is done.
3. The diagram D(A) of A is the union of all the D;(A),

D(A) = Do(A) | J D1 (A) |-~ | Dm(4) (83)
We show the correctness and termination of this algorithm.

Lemma 4.18. Algorithm 4.17 terminates for every A and succeeds in listing
all braid words B which may be obtained from A by rearranging of generators
only, that is using the braid group relations without introducing or removing
any generators.
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Proof. Dy(A) is, by definition, finite. It is obvious that for any braid word
of finite length, the moves in equations (79) to (82) may be applied a finite
number of times. Thus, by induction, every D;(A) is finite. The number of
distinct braid words of a given finite length is finite and since the D;(A)
are, by construction, non-overlapping, their union must be finite. Thus there
exists an m such that D,,15(A) = 0 for every k > 0. Thus the algorithm
terminates for every A.

The moves listed in equations (79) to (82) exhaust all possibilities allowed
in the braid group under the stipulation that no generators must be removed
from or introduced into the word. Thus each word which may be reached from
A by rearrangement of generators will eventually be reached by algorithm
4.17 and so the algorithm succeeds in listing all the required braid words. O

Theorem 4.16 gives the following corollary.

Corollary 4.19. D(A4.) contains a braid of the form EA,, for E =~ e, the
identity in B, .

Proof. By construction D(A,q,) contains all braid words equivalent to
Apmas by rearranging only. By lemma 4.16, A,, can be obtained by a se-
quence of operations which keeps the length constant or decreases it. Each
operation which decreases the length does so by eliminating a sub-word like
e; = O',L‘U,L-_l ~ Ui_ldi.

Since for all i e; =~ e, the identity in B,,, we have

eiajil ~ Uflei, eiej X eje; (84)
for any ¢ and j.

Let us now agree to construct the aforementioned sequence of words with-
out eliminating the sub-words e; but using equation (84) to bring them all to
the left of the word. At the end, we will obtain a word of the form A* = FA,,
where E ~ e is a braid consisting of all these sub-words e;. The most general
form of F is

B= ey (55)

with ¢; > 0 for all 7. So if we could extract F from A,,q;, we would, in the
process, obtain A,,. Since the form EA,, is obtained by rearrangements only,
L(E) < L(A*) = L(Apmag). This indicates that Y°7' 2¢; < L(Apaz). O

Given a braid A, we thus find A, by constructing the diagram D (A2 )
and selecting the word with the largest number of cancellation pairs such as
0;0; 1. Clearly there will be more than one braid word for the same number
of cancellation pairs. We may agree to choose the least braid word lexico-
graphically for definiteness. It is obvious from the construction that this will
be a unique form of minimal length for the braid A. We thus have an algo-
rithm to find A,, for any A. It is regrettable that the diagram D(A,q.) 18,
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by construction, very large. Two questions are left to ask: Can we make the
result stronger and how large is a typical diagram?

In theorem 4.16 we achieved an upper bound for the necessary increase in
length of a braid before it may be reduced to a minimum length. One would
like to simplify the result somewhat but we shall show in this section that
the two straightforward attempts to simplify or strengthen theorem 4.16 are
doomed to failure. First we show that we may not, in general, shorten A,,qz
to the Garside normal form.

Lemma 4.20. It is not, in general, possible to obtain A,, from G(A), the
Garside normal form of A, by operations which monotonically decrease or
keep constant the length of the braid.

One may think that it would be sufficient to list the diagram of the neg-
ative and positive sub-braids of A,,., and search for a maximal length sub-
braid which is common to the end of the first and the beginning of the second
diagram but this is not true as the following lemma shows.

Lemma 4.21. There does not exist an A,, in the form Ay As with Ay nega-
tive and Ag positive for every A.

Let a be a n-braid of length L with diagram D(a). Consider the braid
a = aam[l for some 1 < i < n. We are concerned with the size of D(a’)
in terms of the size of D(a). For each member of D(a), the cancellation pair
00, ! may appear in any place in both possible orders (oio; L and o, Loy), so
in 2(L+1) positions. There may be further moves possible by use of the braid
group relations but the number of these are clearly bounded by a function
linear in L. So the diagram of a word will increase in size by a factor linear in
its length for each possible cancellation pair. Given a random positive n-braid
a of length L, how many members will D(a) have, on average? We conjecture
that:

Congecture 4.22. For any braid a € B, of length L, we have that |D(a)| <
|D(AR)] with p = [2L/(n(n - 1))].

Conjecture 4.22 would provide an upper bound for the size of the diagram
of any word in terms of the diagrams of the diagrams of AP which topologi-
cally are a series of p half-twists of the braid strings about the vertical axis.
In extensive computer simulations, the conjecture was checked and seems to
hold. What it seems to indicate is that the half-twist has the most topolog-
ical freedom for its length and number of strings under the constraint that
the crossing number must be kept constant. This is quite intuitive, yet the
conjecture seems to be difficult to prove.

We have investigated the diagrams of several AP for their size and for the
distribution of braids over the sub-diagrams at each stage of the construction
in algorithm 4.17. In table 1 we list the size of the diagram and maximal
sub-diagram index for p half-twists on n strings.
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Table 1. The Size of Diagrams of Fundamental Words
n p |D (A%)| max. i

31 2 1
32 8 2
33 38 5

34 196 8
35 1062 13
36 5948 18
37 34120 25
41 16 7
42 1654 15
51 768 25

We conclude that the diagram of a typical braid word grows exponen-
tially with its length and braid index and thus our method of finding the
minimal length braid word equivalent to a given braid has exponential com-
plexity. This is not surprising as the problem is NP-Complete. We shall give
a heuristic algorithm and other methods later. The properties of the braid
groups that made the above solution possible are: (i) It is possible to write all
inverse generators as products of the generator of the center and a positive
word, (ii) the defining relations relate positive words only and (iii) the braid
groups are right and left-cancellative. It is likely that any group which has
these properties, has an analog of the Garside normal form and has a solution
to the minimum word problem similar to the one above.

Solving the problem exactly is an expensive endeavor and so we ask for
approximate methods. It turns out that magnetic relaxation is an important
application of this problem and gives rise to good methods to solve it. We shall
delay the discussion of these to section ?77?. It is possible to solve the problem
heuristically using a purely algebraic algorithm which we now present.

Recall that the braid group B, is defined by

Bp = ({oi}: 1<i<m (86)

0i0; = 0;0; |i — j| > 1;040i410; = 0i410:0:41) - (87)

An n-braid A of ¢ crossings is a word in B,, of word-length ¢, so the general
form of A is

A=0gc...gc er==x1, 1<ap<n,Vk:1<k<ec (88)

ai a2 €29

Consider an n-braid A of the form given in equation 88. Suppose we wish
to find the n-braid A, equivalent to A such that the length L(A,,) of A,,
is minimal over the equivalence class of A. It has been shown [63] that this
question is NP-complete and hence computationally difficult (if P # NP, it is
intractable). The following presents a heuristic algorithm for getting close to
A,n. We begin with the leftmost generator of A and attempt to move it to the
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right using both braid group operations. If we can cancel it along the way,
we do and if we can not, we move it back to where it started. In this way,
we proceed to move all the generators as far to the right as possible. Then
we begin at the end and move each generator as far to the left as possible
in the same manner. This algorithm will always produce an equivalent braid
A" such that L(A") < L(A). We consider L(A) generators and move them
O(L(A)) moves to the right and left. Thus this algorithm takes O (L(A)?)
time and constant memory. In fact we move a particular generator at most
L(A) generators and this is only for the case when all the other generators
commute with it, thus the average case complexity is likely to be close to
linear in L(A).

This algorithm will not produce a minimum length representative in all
cases because it can not unravel complex crossings. To get to the minimum
length would require more subtle transformations than just movements to
the right or left, which topologically correspond to pulling the strings apart
from underneath the crossing. However, as computer experiments show, it
does do quite well.

Let us calculate an upper bound to the reduction ratio obtained by this
method as a function of n and c¢. To calculate these, consider the likelihood
that a particular generator will be followed by its inverse, which is just Qo =
1/2(n—1). The probability (); that a generator and its inverse are separated
by j generators through which either can be moved is the corresponding
probability for j = 1 to the power j. We require the number of braids of
length 1 which may be generated so as not to contain the generator interfering
with the movement of generator o;. If i = 1 or n — 1, this is 2(n — 3) and
2(n — 4) otherwise. Thus

2(n — 4) (%) +2(n—3) (2(n31)> ’
2(n—1) @

Q; = 0 (89)

n? —5n+5]’

- e (90)
The final factor of Qg is present because the generator after the sequence
of j generators is required to be inverse of the original generator, an event
with probability Qy. To get the total probability @) of being able to can-
cel a generator o; with its inverse by simple exchange movements over the
length 7 = 0,1, ---, we must sum these probabilities in order weighted by the
probability that their predecessors did not happen. Thus

j—1
Q=Q+1-Q)Q1+ -+ [[1-QuQ;+... (91)
k=0

Note that since the exchange move is not allowed for n = 3, Q = Qg for n = 3.
The reduction ratio R which occurs as a consequence of this probability is
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R =1 — 2Q since each time that the event happens two generators may be
canceled. Note that in this calculation we have considered the probability
that a generator can be moved next to its inverse in the word using only the
far commutation relation that o,0; = o0, for |i —j| > 1 in a long braid. The
heuristic algorithm however uses both braid group moves to attempt to move
generators next to their inverses. Thus R is an upper bound for the reduction
ratio achieved by the heuristic algorithm as the braid becomes long.

In §6 we present the results of the algebraic reduction of a large number
of braids but a few comments about the efficiency of the algorithm are in
order. The only exact algorithm to minimize braid is valid only for n < 3
[11] and by comparing this heuristic to this exact algorithm, we find that
the heuristic finds a braid the length of which is within five percent of the
length found by the exact algorithm and that it reaches the actual minimum
in 0.005 of all cases. This shows that the heuristic is quite effective for n = 3
(note that reduction for n = 1,2 is trivial since By, Bo are free groups).

5 OpenProblems

The problems that follow are, to the best of my knowledge, unsolved at the
time of publication. The selection is personal and far from complete. However,
each problem is quite significant in that its solution will have an impact on
research. I believe that even partial results for most of these problems would
be worth a Ph.D. The problems are presented in no particular order.

1. Is the Burau representation faithful for n = 4?7 Seems hard to answer but
the significance is somewhat debatable since it is unfaithful for n > 4.

2. Does the Jones polynomial identify the unknot? In other words, is there
a knot (distinct from the unknot) that has the same Jones polynomial as
the unknot? (Warning: Searches for a counterexample have gotten quite
far in the knot tables, so if there is a counterexample it is not simple. At
present, it seems likely that there is no counterexample.)

3. Construct a polynomial-time algorithm for calculating the Jones and
related polynomials or show that this cannot be done (assuming that
P # NP a proof of NP-completeness would do).

4. Construct an inherently algebraic algorithm for solving the Markov prob-
lem. (Note: The problem is definitely solvable via Hemions algorithm but
this is very complicated, we are looking for a simple algorithm even if it
is in exponential-time.)

5. Prove that the Markov problem is NP-complete, intractable or find a
polynomial-time algorithm for it. (Note: Depending on how this is done
and the answer, this is probably a Fields Medal problem but that should
not discourage you from trying it.)

6. Construct a provably secure cryptosystem on the basis of the braid or
similar groups. (Note: With present systems the question of security is
not quite settled.)



10.

11.
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Create a general theory of 2-tangle equations and how to solve them.
(Note: The solvability needs to be practical as these equations actually
come up in biology.) As an encore, do it for n-tangle equations.

Create a theory of physical braids with aims to study then tension prop-
erties of various knots independent of the rope on which they are tied.
Construct further invariants of knots and braids, preferably easily calcu-
lable and strong (not too many distinct knots having the same value of
your invariant).

Construct a complete invariant of knots that can actually be compared
computationally. (Note: The peripheral group system is complete but it
cannot be compared to other systems because groups cannot in general
be distinguished from another.)

Build a software system that makes it easy to input/output knots and
braids, compute many invariants, identify the knot in a table, construct
a knot table and play with new ideas largely independent of complex
programming.
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