
Proceedings of ALGORITMY 2005
pp. 1–10

DOWNHILL SIMPLEX METHODS FOR OPTIMIZING
SIMULATED ANNEALING ARE EFFECTIVE

PATRICK BANGERT∗

Abstract. The method of simulated annealing was used to get a heuristic solution for the
minimum length word equivalent to a given word in the braid groups (a known NP-complete problem).
The simulated annealing paradigm with a simple cooling schedule leaves five parameters up to the
user to choose that were chosen empirically based on performance experiments as is the usual practise.
After this, a downhill simplex method was developed to further optimize these critical parameters
and a quality improvement of up to 26.1% was observed. This additional improvement made the
algorithm competitive, on average, with custom designed heuristics for this problem.

The conclusions going beyond the present combinatorial problem are: (1) Fine-tuning of cooling
schedule parameters is critical for the solution quality in simulated annealing, (2) downhill simplex
methods (as opposed to Newton’s method, for example) are well-suited for this task and (3) significant
quality improvement is possible even for a simple cooling schedule.

Key words. Simulated annealing, heuristic, braid group, downhill simplex.

AMS subject classifications. 05-04, 65C05, 65C40, 68W20

1. Introduction.

1.1. Simulated Annealing. Simulated annealing is a paradigm method for op-
timization problems of many types [8]. It was first presented in 1953 as an idea from
industrial physics together with an interpretation of this industrial process from statis-
tical mechanics [4]. To form a strong alloy, one heats up the components, mixes them
well and lets them cool slowly according to a strict (empirically determined) cooling
schedule in order to minimize the number of defects in the solidification process of the
material. This physical annealing process is interpreted in the setting of combinatorial
optimization (by which we mean finding the minimum of a cost function C(x) for the
vector of variables x in many dimensions) by the following meta-algorithm:

Data : A candidate solution S and a cost function C(x).
Result : A solution S′ that minimizes the cost function C(x).
T ← Starting Temperature
while not frozen do

while not at equilibrium do
S′ ← perturbation of S.
if C(S′) < C(S) or selection criterion then S ← S′

end
end

Algorithm 1: General Simulated Annealing

In words, we begin with a guessed solution S and heat it up using some starting
temperature. While at one temperature, the system is allowed to transit to other
states until it reaches equilibrium at that temperature. Transitions that lower cost

∗School of Engineering and Science, International University Bremen, P.O. Box 750 561, 28725
Bremen, Germany. (p.bangert@iu-bremen.de).

1

2 P. BANGERT

are always accepted and transitions that increase cost are accepted relative to some
selection criterion that usually is a function of both the current temperature and
the cost increase of the proposed change. When equilibrium has been reached the
temperature is changed and this is continued until the system is at equilibrium at a
very low temperature at which time we call it frozen. Due to the equilibration and
the guaranteed acceptance of a downhill transition, the final state is certain to be a
minimum in the cost function. It may however be a local minimum and not the global
one. In order to increase the chances of getting the global minimum, the algorithm
allows uphill transitions preferentially early in the execution of the algorithm, i.e. at
high temperatures.

Simple as this idea may seem, it is very powerful and this general algorithm has
been used to solve a variety of problems. It is regarded to be the solution to the most
studied problem of optimization, the travelling salesman problem [6]. Research about
simulated annealing reached its heyday in the mid 1980’s and has been employed in a
variety of settings since then; a search reveals 986 Ph.D. theses in the last 18 years that
focussed on using the method to solve some problem of practical significance [3, 7].
The later advent of genetic algorithms stole the limelight from simulated annealing
for some time [8]. However, from direct comparisons between these two approaches it
appears that simulated annealing nearly always wins in all three important categories:
implementation time, use of computing resources (memory and time) and solution
quality [3, 8].

In our general presentation in algorithm 1, we have not specified five crucial
components in the method: (1) starting temperature, (2) freezing condition, (3) equi-
librium condition, (4) perturbation mechanism and (5) selection criterion. The per-
turbation mechanism is problem dependent and cannot be discussed in general. We
will discuss it in the context of the example below. The simplest version of simulated
annealing sets five constants A, B, C, D and E to some initial values and looks like
this:

Data : A candidate solution S and a cost function C(x).
Result : A solution S′ that minimizes the cost function C(x).
T ← A
while T > B do

for i = 1 to C do
S′ ← perturbation of S.
if C(S′) < C(S) or Random < exp[(C(S′)− C(S))/DT] then S ← S′

end
T ← ET

end

Algorithm 2: Simple Simulated Annealing

In words, we start with a constant temperature A and define a constant temper-
ature B to be the freezing point. Equilibration is assumed to occur after or within C
steps of the proposal-acceptance loop where the selection criterion is the thermody-
namic Maxwell-Boltzmann distribution after which the temperature is decremented
by a constant factor. The standard choices for these constants are A = C(S), B is 100
times smaller than the best lower bound on cost, C = 1000, D = 1 and E = 0.9. After
successful implementation of this algorithm, one usually plays with these parameters
until the program behaves satisfactorily. It is clear that implementing this method

SIMPLEX METHODS FOR SIMULATED ANNEALING 3

is very fast and we observe from the literature that the vast majority of applications
are computed using the version of simulated annealing given in algorithm 2 where the
five parameters are determined manually [3].

The entire literature on simulated annealing makes two marked omissions: No
direct comparison of a variety of cooling schedules nor a systematic investigation of
the dependence of simulated annealing on the above parameters is made (only partial
and scattered data are available with regard to both issues). In this paper, we wish
to rectify the second omission. We find that small changes in the parameters of the
simple cooling schedule presented above can have significant effects on the solution
quality in the average case of the resultant simulated annealing algorithm. We do this
by means of a representative example: Finding the minimum length word in a braid
group.

1.2. The Minimum Length Braid Word Problem. The braid groups are
given by their Artin presentation

Bn =

〈
{σi} : σiσj ≈ σjσi, σiσi+1σi ≈ σi+1σiσi+1,

1 ≤ i, j < n, |i− j| > 1

〉
(1.1)

Suppose that w ∈ Bn and let L(w) give the letter length of the word w. The minimum
word problem asks us to find a word u ∈ Bn such that u ≈ w and that L(u) ≤ L(v)
for any word v ∈ Bn and v ≈ w; that is for an equivalent word of minimum length.
In B1 and B2, the problem is trivial and in B3, a polynomial-time algorithm exists
[2]. For Bn with n > 3, the problem is known to be NP-complete [5]. A number of
heuristic methods have been designed for this problem and seem to work very well
[1].

The cost function is clearly L(w) and the transitions are the group relations with
the obvious possibility of either cancelling or including the pair σiσ

−1
i anywhere in

the word.
This problem is representative of many combinatorial problems. It is a symbol

sequence with a certain number of allowed moves on it together with a cost function.
The travelling salesman problem and protein folding are just two industrial examples
that are very similar in nature to minimizing braids [8]. The issue of braid minimiza-
tion is important when one models the magnetic field lines on the solar corona [1].
As one cannot see inside the sun, the lines appear to have endpoints and due to mag-
netohydrodynamics the topology must be conserved, i.e. the field lines are braided.
The amount of energy stored in a braid is proportional to the number of essential
crossings in it - the crossings that are needed to achieve the topology defined by this
braid. However most braids are randomly generated due to the erratic motion of the
endpoints on the photospheric surface. Hence the attempt to find the shortest braid
word topologically equivalent to a given one. The modelling effort for magnetic field
lines is directed towards predicting solar flares and coronal mass ejections that have
significant effects on the Earth and some of its important systems (electrical power
grids, satellites, communication networks etc.). For these reasons, we believe braid
minimization to be a representative and important problem to be studied. Heuristics
must be used as the problem is NP-complete for n > 3. Past efforts at designing a
custom heuristic have been successful but the problem lends itself well to simulated
annealing which we compare with the custom methods here.

2. Simulated Annealing as a Function. Suppose we start simulated anneal-
ing with configuration S and obtain configuration S′ as a result, then we define the

4 P. BANGERT

reduction ratio α by

α =
C(S)− C(S′)

C(S)
(2.1)

As C(S′) ≤ C(S), we have 0 ≤ α ≤ 1. The efficacy of the optimization method
may be measured by α at least on average when the initial solution S is generated
randomly. The quality is high when α is high (the best case having α = 1). Clearly
the α obtained varies between different starting configurations and even between runs
of simulated annealing with the same starting configuration because of the random
element in the method. Therefore, we agree to run simulated annealing N times using
randomly generated initial configurations of the same cost. Then we define,

α =
N · C(S)− C(S1)− C(S2)− · · · − C(SN)

N · C(S)
(2.2)

which is the average reduction ratio over the N runs. As long as N is large enough,
the random variations of the method should cancel out and the result should become
predictable to within a given accuracy. Using this interpretation, we may regard the
simulated annealing method as defining a function α = α(A,B,C,D,E) depending
on five parameters (for the simple schedule). We would like the average reduction
ratio to be as large as possible.

This is yet another optimization problem with a function instead of a combinato-
rial problem. We are able to evaluate the function only at considerable computational
cost (N runs of simulated annealing for N randomly generated initial configurations)
and we do not know its derivative accurately. Even approximating the derivative
comes only at heavy computational cost. The method of choice for optimizing a
function over several dimensions of this type is the downhill simplex method (alterna-
tively one may use direction set methods). Thus, we use the downhill simplex method
to minimize −α(A,B,C,D,E) (which is the same as maximizing α(A,B,C,D,E)).
Optimization methods that require knowledge of the derivative, such as Newton’s
method, were also tried but these failed due to the computational problems of pro-
viding an accurate derivative.

The starting point for the simplex method will be given by those values of the five
parameters that we obtain after some manual experiments. This is done for the reason
that most practitioners of the simulated annealing paradigm choose their parameters
based on manual experiments [3]. The other points on the simplex are set by manually
estimating the length scale for each parameter [6].

3. Results and Discussion. We implemented the downhill simplex method
to minimize −α(A,B,C,D,E) which was implemented according to algorithm 2 and
evaluated using equation 2.2. Manual experiments were started looking at−α(A,B,C,D,E)
and attempting to find optimal parameters manually. This is the approach taken by
the vast majority of practitioners of the simulated annealing methodology thinking
that the algorithm is robust enough to find the global minimum in any case. This
point was used as the starting point for downhill simplex method that found different
values from the manual search.

In table 3.1, we give the computational results representing about four months of
computation time. The first column gives the index of the braid group studied. The
second column is a custom heuristic that represents the state-of-the-art solution for
this problem [1]. The third column is the result of the manual simulated annealing

SIMPLEX METHODS FOR SIMULATED ANNEALING 5

Table 3.1

Reduction ratios α (average final length divided by initial length) as a function of the number
of strings n.

n Crossing Manual Downhill Change
Force Annealing Annealing (%)

3 0.426(6) 0.327(3) 0.293(3) 10.4
4 0.430(5) 0.451(4) 0.384(4) 14.9
5 0.447(4) 0.537(6) 0.438(6) 18.4
6 0.455(4) 0.596(5) 0.474(5) 20.4
7 0.469(4) 0.734(3) 0.550(3) 25.1
8 0.471(4) 0.681(4) 0.518(4) 23.9
9 0.476(4) 0.541(5) 0.534(5) 1.3

10 0.481(4) 0.736(3) 0.544(3) 26.1

search. The fourth column gives the result of the downhill simplex optimized average
reduction ratio (we took N = 1000 and L(w) = 100). The fifth column compares
the improvement of the downhill simplex values to the manual values. The numbers
in brackets express the computed error in the last digit. We easily see that the
(optimized) simulated annealing algorithm is competitive with the custom heuristic
(it is actually better for n < 6).

Many simulated annealing papers have been published that center around the
topic of performance of the algorithm in terms of getting to an acceptable minimum
quickly [8]. A variety of cooling schedules have been designed that can reduce the
computation time at the expense of solution quality. While the author experimented
with a number of open-source implementations of simulated annealing for a variety of
optimization problems with tools such as a profiler, speed-ups of up to three orders of
magnitude were achieved. This is in contrast to claimed speed-up factors of between
1.2 and 2.0 that come from changing the cooling schedule at the expense of solution
quality [8]. Thus the author believes the speed of the simulated annealing method to
be so dominated by programming care that he has not attempted to simultaneously
optimize solution quality and execution speed. This simultaneous optimization would,
however, be no problem in principle after one made the, completely random, decision
how relatively important speed is in relation to quality.

While the results shown in columns three and four of table 3.1 where computed
for initial braid lengths of 100 generators, a large number of experiments were made
with other initial lengths. As in previous work, we find an approximately logarithmic
growth of α with respect to both group index n and initial length L(w) [1]. The average
reduction ratio seems to become relatively constant after n = 10 and L(w) = 100.
The final parameter list found for a particular n and L(w) depends very strongly on
n and L(w). This means that the five parameters for the simple simulated annealing
schedule must be viewed as not being constants at all but being functions of the input
size.

4. Conclusions. Thus we may draw a number of conclusions that would ap-
pear to hold in general: (1) The solution quality obtained using simulated annealing
depends strongly on the numerical values of the parameters of the cooling schedule,
(2) the downhill simplex method is effective in locating the optimal parameter values
for a specific input size, (3) the parameters depend strongly on input size and should
therefore not be global constants for an optimization problem, (4) the improvement

6 P. BANGERT

in solution quality can be significant for theoretical and practical problems (up to
26.1% improvement was measured in these experiments which is large enough to have
significant industrial impact).

Furthermore, the reason that the usual manual search is so much worse than an
automated search seems to be that the solution quality (as measured by the average
reduction ratio) depends strongly on the cooling schedule parameters, i.e. the land-
scape is a complex mountain range with narrow valleys that are hard to find manually.
Finally, the improved schedule parameters, in general, lead to slightly greater execu-
tion time but in view of the dramatic improvement of quality (as well as the fact that
execution time seems to be dominated by programming care) this is well worth it.

Acknowledgments. I am very grateful to Milko Krastev for helping with the
software and the initial experiments and to the CLAMV computing facility at the
International University Bremen for supplying the computing power.

REFERENCES

[1] P. D. Bangert, M. A. Berger and R. Prandi, In Search of Minimal Random Braid Config-
urations, J. Phys. A, 35 (2002), pp. 43–59.

[2] M. A. Berger, Minimum Crossing Numbers for Three-Braids, J. Phys. A, 27 (1994), pp. 6205–
6213.

[3] N. E. Collins, R. W. Eglese, B. L. Golden, Simulated Annealing - An Annotated Bibliog-
raphy, Am. J. Math. Manag. Sci., 8 (1988), pp. 209–307.

[4] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation of
State Calculations by Fast Computing Machines, J. Chem. Phys., 21 (1953), pp. 1087–1092

[5] M. S. Paterson and A. A. Razborov, The set of minimal braids in co-NP-complete, J.
Algorithms, 12 (1991), pp. 393–408.

[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes
in C, Cambridge University Press, Cambridge, 1992.

[7] ProQuest, http://www.umi.com/proquest/
[8] P. Salamon, P. Sibani and R. Frost, Facts, conjectures, and improvements for simulated

annealing, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002.

